Els bacteris de l’intestí ens controlen el què mengem

Click here for the english version: Bacteria in the gut are controlling what we eat

Sembla que és així: els microbis del nostre tracte gastrointestinal (TGI) influeixen en la nostra tria de menjar. No és estrany: els microbis, bacteris bàsicament, són presents al TGI en quantitats importants, més de 10 cèl.lules bacterianes per cadascuna de les nostres, un total de 1014 (el cós humà té unes 1013 cèl.lules). Això equival a uns 1-1.5 kg de pes. I aquest bacteris conviuen amb nosaltres des de sempre, ja que tots els mamífers en tenen, amb la qual cosa han anat evolucionant amb els nostres precursors i per tant estan molt ben adaptats al nostre ambient intern. Com que per a ells els nostres cossos són el seu hàbitat, doncs millor si poden controlar el que els arriba a l’intestí. I cóm ho poden fer ? Doncs donant ordres al cervell per menjar tal cosa o tal altra que els vagin bé als microbis.

 

Fig 1 comandament

Figura 1. “Centre de comandament del tracte gastro-intestinal” (muntatge propi, Albert Bordons)

 

Bé, doncs anat seriosament, hi ha alguns treballs previs en aquest sentit, d’una relació entre les preferències per una dieta determinada i la composició microbiana del TGI (Norris et al 2013). De fet, és una interacció bidireccional, una més dels molts aspectes de mutualisme simbiòtic entre nosaltres i la microbiota que ens habita (Dethlefsen et al 2007).

Hi ha moltes proves que la dieta influeix en la microbiota. Un dels exemples més vistosos és que s’ha vist que els nens africans alimentats quasi exclusivament en sorgo tenen més microbis cel.lulolítics que altres nens (De Filippo et al 2010).

El cervell també pot influir indirectament en la microbiota entèrica per canvis en la motilitat, secreció i permeabilitat gastrointestinals, o directament alliberant molècules al lumen del digestiu des de cèl.lules (del sistema immune o neurones) subepitelials (Rhee et al 2009).

El TGI és un ecosistema complex on diferent espècies de bacteris i altres microorganismes han de competir i col.laborar entre ells i amb les cèl.lules de l’hoste. El menjar ingerit per l’hoste (humà o altres mamífers) és un factor important en la selecció contínua d’aquests microbis i la naturalesa d’aquest menjar està sovint determinada per les preferències de l’hoste. Els bacteris que puguin manipular aquestes preferències tindran avantatges sobre els que no ho facin (Norris et al 2013).

Recentment Alcock et al (2014) han recollit en una revisió les evidències en aquest sentit. Els microbis poden manipular la conducta alimentària de l’hoste en benefici propi a través de diverses estratègies possibles. Veiem-ne a continuació alguns exemples relacionats amb l’esquema de la Figura 2.

 

Fig 2 human microbiome behaviour appetite

Figura 2. Com si els microbis fossin titellaires i els humans fóssim les titelles, els microbis poden controlar el que volem menjar mitjançant una sèrie de mecanismes senyalats. Adaptat de Alcock et al 2014.

 

Les persones que tenen “desitjos” de xocolata tenen diferents metabòlits microbians a l’orina que les persones indiferents per a la xocolata, malgrat tenir la mateixa dieta.

La disfòria, o sigui, el malestar en l’humà fins que mengem aliments que milloren el “benestar” microbià, pot ser deguda a l’expressió de gens bacterians de virulència i la percepció de dolor per l’hoste. Això és perquè la producció de toxines sovint és desencadenada per una baixa concentració de nutrients limitants del creixement. La detecció de sucres i altres nutrients regula la virulència i el creixement de diversos microbis. Aquests lesionen directament l’epiteli intestinal quan alguns nutrients són absents. D’acord amb aquesta hipòtesi, s’ha demostrat que proteïnes de virulència bacteriana activen els receptors de dolor. S’ha vist que el dejuni en ratolins augmenta la percepció del dolor per un mecanisme del nervi vagal.

Els microbis també poden alterar les preferències alimentàries dels hostes canviant l’expressió dels receptors del gust a l’hoste. En efecte, per exemple s’ha vist que ratolins lliures de microbis prefereixen més els dolços i tenen un major nombre de receptors del dolç a la llengua i a l’intestí que els ratolins amb una microbiota normal.

La conducta alimentària de l’hoste també pot ser manipulada pels microbis mitjançant el sistema nerviós, pel nervi vague, que conecta les 100 milions de neurones del sistema nerviós entèric des de l’intestí a la base del cervell via medul.la. Els nervis entèrics tenen receptors que reaccionen amb la presència de determinats bacteris i dels metabòlits bacterians, com els àcids grassos de cadena curta. El nervi vague regula la conducta alimentària i el pes corporal. S’ha vist que l’activitat del nervi vague de rates estimulades amb norepinefrina fa que malgrat estar saciades segueixin menjant. Això suggereix que els microbis del TGI produeixen neurotransmissors que poden contribuir a la sobrealimentació.

Els neurotransmissors produïts pels microbis són anàlegs de les hormones dels mamífers relacionades amb l’estat d’ànim i el comportament. Més del 50% de la dopamina i la majoria de serotonina del cos tenen un origen intestinal. Molts habitants transitoris i persistents de l’intestí, incloent E. coli, diversos Bacillus, Proteus i Staphylococcus secreten dopamina. A la Taula 1 veiem un resum dels diversos neurotransmissors produïts per microbis del TGI. Al mateix temps, s’ha vist que enzims de l’hoste com l’amino-oxidasa poden degradar neurotransmissors produïts pels microorganismes, la qual cosa demostra les interaccions evolutives entre microbis i hostes.

 

Taula 1. Diversitat de neurotransmissors aïllats de diverses espècies microbianes (Roschchina 2010)

Neurotransmissor Gènere
GABA (àcid gamma-amino-butíric) Lactobacillus, Bifidobacterium
Norepinefrina Escherichia, Bacillus, Saccharomyces
Serotonina Candida, Streptococcus, Escherichia, Enterococcus
Dopamina Bacillus, Serratia
Acetilcolina Lactobacillus

 

 

 

 

 

 

 

Alguns bacteris indueixen a què els seus hostes els proveeixin els seus nutrients preferits. Per exemple, Bacteroides thetaiotaomicron es troba al mucus intestinal, on s’alimenta dels oligosacàrids secretats per les cèl.lules caliciformes de l’intestí, i aquest bacteri indueix el seu hoste mamífer a augmentar la secreció d’aquests oligosacàrids. Al contrari, Faecalibacterium prausnitzii, un no degradador de mucus, que es troba associat amb B. thetaiotaomicron, inhibeix la producció de mucus. Per tant, ens trobem en un ecosistema amb múltiples agents que interaccionen entre sí i amb l’hoste.

Com que la microbiota és fàcilment manipulable pels prebiòtics, probiòtics, antibiòtics, trasplantaments fecals, i canvis en la dieta, el control i l’alteració de la nostra microbiota ofereix un mètode viable als problemes altrament insolubles de l’obesitat i la mala alimentació.

 

Bibliografia

Alcock J, Maley CC, Aktipis CA (2014) Is eating behavior manipulated by the gastrointestinal microbiota? Evolutionary pressures and potential mechanisms. BioEssays 36, DOI: 10.1002/bies.201400071

De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, et al (2010) Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA 107:14691–6

Dethlefsen L, McFall-Ngai M, Relman DA (2007) An ecological and evolutionary perspective on human-microbe mutualism and disease. Nature 449:811-818

Lyte M (2011) Probiotics function mechanistically as delivery for neuroactive compounds: Microbial endocrinology in teh design and use of probiotics. BioEssays 33:574-581

Norris V, Molina F, Gewirtz AT (2013) Hypothesis: bacteria control host appetites. J Bacteriol 195:411–416

Rhee SH, Pothoulakis C, Mayer EA (2009) Principles and clinical implications of the brain–gut–enteric microbiota axis. Nature Reviews Gastroenterology and Hepatology 6:306-314

Roschchina VV (2010) Evolutionary considerations of neurotransmitters in microbial, plant, and animal cells. In Lyte M, Freestone PPE, eds; Microbial Endocrinology: Interkingdom Signaling in Infectious Disease and Health. New York: Springer. pp. 17–52

 

 

Anuncis

About Albert Bordons

Professor at "Universitat Rovira i Virgili" in Tarragona. Born in Barcelona 1951. Scientific areas: microbiology, biochemistry, biotechnology, oenology. I like: nature, biological sciences, photography, mountains, ... Languages: catalan (first one), spanish, french, english and some italian.

Posted on 8 Setembre 2014, in Bacteris, Bacteris Làctics i productes, Evolució, Microbiota, Simbiosis and tagged , , , , , , , , , , , . Bookmark the permalink. 4 comentaris.

Deixa un comentari

Fill in your details below or click an icon to log in:

WordPress.com Logo

Esteu comentant fent servir el compte WordPress.com. Log Out / Canvia )

Twitter picture

Esteu comentant fent servir el compte Twitter. Log Out / Canvia )

Facebook photo

Esteu comentant fent servir el compte Facebook. Log Out / Canvia )

Google+ photo

Esteu comentant fent servir el compte Google+. Log Out / Canvia )

Connecting to %s

No sé ni cómo te atreves

Fotografía y esas pequeñas cosas de cada día

Pols d'estels

El bloc d'Enric Marco

Life Secrets

For my students

All you need is Biology

Blog professional sobre Biologia · Blog profesional sobre Biología · A professional blog about Biology

Rambles of a PA student

Caffeinated forays into biological imaginings.

Horitzons llunyans

Mirades distants

#4wine

Los vinos son pequeñas historias dentro de una botella y nosotras queremos contarte las nuestras

Vi·moments·persones

Un maridatge a tres bandes

SciLogs: Artificial, naturalmente

Coses interessants de ciències de la vida i de la natura, i altres no tan "Bios"

microBIO

Coses interessants de ciències de la vida i de la natura, i altres no tan "Bios"

RealClimate

Coses interessants de ciències de la vida i de la natura, i altres no tan "Bios"

Quèquicom

Coses interessants de ciències de la vida i de la natura, i altres no tan "Bios"

Dionís de viatge a Ítaca

Experiències enoturístiques

%d bloggers like this: