Category Archives: Microbiota

Bacillus com a probiòtics

Click here for the English version: Bacillus as probiotics

4 d’agost 2017

Els probiòtics

Els probiòtics són microorganismes vius que, en ingerir-los en quantitats adequades, poden tenir algun efecte positiu sobre la salut dels hostes (FAO/WHO 2006; World Gastroenterology Organisation 2011; Fontana et al. 2013). Els hostes poden ser els humans però també altres animals. Els bacteris làctics, sobretot del gènere Lactobacillus, i els bifidobacteris, ambdós considerats com a GRAS (Generally recognized as safe, generalment reconeguts com a segurs), són els més utilitzats com a probiòtics, però altres bacteris i alguns llevats també poden ser útils. A banda de poder ser administrats com a medicaments, els probiòtics es consumeixen normalment des de fa mil·lennis com una part dels aliments fermentats, com passa amb el iogurt i altres productes làctics (vegeu el meu article “Formatge europeu de fa 7400 anys ….” 26 desembre 2012). Com a medicaments, els probiòtics generalment són venuts sense recepta, de venda lliure a les farmàcies (OTC en anglès, over-the-counter).

Ja he comentat en altres articles d’aquest blog la rellevància dels probiòtics (“Un nou probiòtic activa la microbiota contra el càncer de fetge” 13 juliol 2016), així com de la microbiota que conviu amb el nostre cos (“Bacteris controlant el que mengem” 8 set 2014 ; “Bacteris de la llet materna” 26 gener 2013) i dels altres animals (“Microbiota de la pell humana … i del gos de casa” 17 novembre 2015; “El panda gegant i la seva microbiota…” 26 agost 2015).

A banda dels bacteris làctics i els bifidobacteris, altres microorganismes que també s’utilitzen en certa mesura com a probiòtics són el llevat Saccharomyces cerevisiae, algunes soques d’Escherichia coli, i alguns Bacillus, com ara veurem. També comencen a utilitzar-se alguns clostridials, en relació al que vaig comentar en un article anterior d’aquest mateix blog pel març 2015 (“Tenim clostridis bons al budell….”).

 

Els Bacillus

De fet, els Bacillus i els clostridials tenen en comú la capacitat de formar endòspores. I tots dos grups són grampositius, dins del fílum taxonòmic Firmicutes (Figura 1), que inclou també els bacteris làctics. Tanmateix, els bacil·lals (Bacillus i altres semblants, però també estafilococs i Listeria) són evolutivament més a prop dels lactobacil·lals (els bacteris làctics) que dels clostridials. La principal diferència fisiològica entre Clostridium i Bacillus és que els primers són anaerobis estrictes i Bacillus són aerobis o facultatius.

Fig 1 tree gram + AB

Figura 1. Esquema d’arbre filogenètic dels bacteris grampositius (Firmicutes i Actinobacteris). Elaboració pròpia.

 

Les endòspores bacterianes (Figura 2) són les estructures biològiques més resistents, ja que sobreviuen als ambients inhòspits extrems, com radiacions UV i gamma, dessecació, lisozim, altes temperatures (són la referència per als càlculs d’esterilització tèrmica), falta de nutrients i desinfectants químics. Es troben al terra i a l’aigua, on poden sobreviure durant períodes de temps molt llargs.

Fig 2 bacillus Simon Cutting

Figura 2. Endòspores (les parts blanques) de Bacillus subtilis en formació (Imatge de Simon Cutting).

 

Bacillus als aliments fermentats, sobretot asiàtics

Diversos Bacillus estan implicats clàssicament en els processos de fermentació d’aliments, sobretot per la seva capacitat de producció de proteases, amb la qual cosa durant les fermentacions contribueixen a l’enriquiment nutritiu amb els aminoàcids resultants de la proteòlisi enzimàtica.

Uns d’aquests aliments són els fideus de farina d’arròs fermentada, típics de Tailàndia i Birmània. S’ha vist que en aquesta fermentació intervé una varietat de microorganismes, amb bacteris làctics, llevats i altres fongs, però també bacteris aerobis entre els que hi ha B. subtilis. S’ha trobat que l’activitat proteolítica d’aquests digereix i elimina substrats proteics de l’arròs que són al·lèrgens, com l’azocaseïna, i per tant tenen una activitat beneficiosa per a la salut dels consumidors (Phromraksa et al. 2009).

Tanmateix, l’aliment fermentat amb Bacillus més conegut és la soja fermentada alcalina. Com sabeu, la soja (Glycine max) o faves de soja, són un dels vegetals nutritius més consumits històricament, sobretot als països asiàtics. Se n’obté “llet” de soja, farina de soja, oli de soja, concentrat de soja, iogurt de soja, tofu (llet de soja quallada), i productes fermentats com la salsa de soja, el tempeh, el miso i altres. La majoria d’aquests fermentats es fan amb el fong Rhizopus, afavorint el seu creixement per acidificació o inoculant-lo directament. En canvi, si no s’acidifica i les faves de soja es deixen fermentar només amb aigua, els microbis naturals predominants que ho fermenten són Bacillus, i d’aquesta manera s’obté, entre altres, el “chongkukjang” coreà, el “kinema” de la Índia, el “thua nao” del nord de Taïlàndia, el “douchi” xinès, el “chine pepoke” birmà, i el més conegut, el “natto” japonès (Figura 3). La fermentació espontània amb els Bacillus dona amoni com a subproducte, i per això és alcalina, la qual cosa dóna una olor no gaire bona a molts d’aquests productes, però el natto s’elabora amb un cultiu seleccionat de B. subtilis que hi dóna un olor més suau i agradable (Chukeatirote 2015).

Aquests aliments són bons del punt de vista nutritiu ja que contenen proteïnes, fibra, vitamines, i tot d’origen vegetal o microbià. A més, la publicitat del natto comercial emfatitza, a banda de què és elaborat artesanalment i es ven fresc (no congelat), les seves qualitats probiòtiques, dient que els B. subtilis (Figura 4) que conté promouen la salut gastrointestinal, immunològica, cardiovascular i dels ossos (www.nyrture.com). Diuen que el sabor i la textura del natto són exquisits. Es menja amb arròs o amb altres ingredients i salses, i també dins el maki sushi. Caldrà provar-lo !

OLYMPUS DIGITAL CAMERA

Figura 3. El “natto”, faves de soja fermentades amb B. subtilis, esmorzar amb arròs, típic japonès (Pinterest.com)

Fig 4 Bs nyrture-com micrograf electro colorejada

Figura 4. Micrografia electrònica colorejada de Bacillus subtilis (Nyrture.com)

 

Bacillus com a probiòtics

Justament les endòspores són el principal avantatge dels Bacillus per ser utilitzats com a probiòtics, gràcies a la seva estabilitat tèrmica i per poder sobreviure les condicions gàstriques (Cutting 2011). Si bé Clostridium també té aquest avantatge, la seva condició d’anaerobi estricte en fa més complexa la seva manipulació, a banda del “mal nom” d’aquest gènere degut a algunes conegudes espècies tòxiques d’aquest gènere.

A diferència d’altres probiòtics com Lactobacillus o Bifidobacterium, les endòspores de Bacillus poden ser emmagatzemades indefinidament sense aigua. Els productes comercials s’administren en dosis d’unes 10^9 espores per gram o per ml.

Cada cop hi ha més productes comercials de probiòtics que contenen Bacillus, tant per a consum humà (Taula 1) com per a ús veterinari (Taula 2). A més a més, també hi ha uns 5 productes específics per a aqüicultura amb diversos Bacillus, i a més sovint les granges de gambes utilitzen els de consum humà (Cutting 2011).

Per a ús en l’aqüicultura s’han obtingut productes probiòtics de barreges de Bacillus (B. thuringiensis, B. megaterium, B. polymixa, B. licheniformis i B. subtilis) aïllant-los de l’intestí de la gamba Penaeus monodon infectada de vibriosis. S’han seleccionat en base a biodegradació de nutrients i a la capacitat inhibitòria del patogen Vibrio harveyi (Vaseeharan & Ramasamy 2003) Són preparats en liòfil o microencapsulades en alginat sòdic, i s’ha comprovat que milloren significativament el creixement i la supervivència de les gambes (Nimrat et al. 2012).

Com veiem per als productes de consum humà, quasi la meitat de les marques (10 de 25) són elaborades al Vietnam. En aquest país l’ús de Bacillus probiòtics està més desenvolupat que en qualsevol altre, però els motius no estan clars. Curiosament allà, com en altres països del sud est asiàtic, no hi ha el concepte de suplements dietètics i els probiòtics com Bacillus només són venuts com a medicaments aprovats pel Ministeri de Salut. Es prescriuen per a la infecció per rotavirus (diarrea infantil) o la estimulació immunològica enfront enverinaments, o són molt freqüentment utilitzats com a teràpia contra infeccions entèriques. Tanmateix, no està clar que s’hagin fet proves clíniques i són productes fàcils de comprar (Cutting 2011).

 

Taula 1. Productes comercials de probiòtics amb Bacillus, per a consum humà (modificat de Cutting 2011).

Producte País del fabricant Espècies de Bacillus
Bactisubtil ® França B. cereus
Bibactyl ® Vietnam B. subtilis
Bidisubtilis ® Vietnam B. cereus
Bio-Acimin ® Vietnam B. cereus i 2 altres
Biobaby ® Vietnam B. subtilis i 2 altres
Bio-Kult ® Regne Unit B. subtilis i 13 altres
Biosporin ® Ucraïna B. subtilis + B. licheniformis
Biosubtyl ® Vietnam B. cereus
Biosubtyl DL ® Vietnam B. subtilis i 1 altre
Biosubtyl I i II ® Vietnam B. pumilus
Biovicerin ® Brasil B. cereus
Bispan ® Corea Sud B. polyfermenticus
Domuvar ® Itàlia B. clausii
Enterogermina ® Itàlia B. clausii
Flora-Balance ® Estats Units B. laterosporus *
Ildong Biovita ® Vietnam B. subtilis i 2 altres
Lactipan Plus ® Itàlia B. subtilis *
Lactospore ® Estats Units B. coagulans *
Medilac-Vita ® Xina B. subtilis
Nature’s First Food ® Estats Units 42 soques, incloent 4 B.
Neolactoflorene ® Itàlia B. coagulans * i 2 altres
Pastylbio ® Vietnam B. subtilis
Primal Defense ® Estats Units B. subtilis
Subtyl ® Vietnam B. cereus
Sustenex ® Estats Units B. coagulans

* Alguns etiquetats com Lactobacillus o altres bacteris porten realment Bacillus

 

Taula 2. Productes comercials de probiòtics amb Bacillus, per a ús veterinari (modificat de Cutting 2011).

Producte Animal País del fabricant Espècies de Bacillus
AlCare ® Porcs Austràlia B. licheniformis
BioGrow ® Pollastres, vedells, porcs Regne Unit B. licheniformis i B. subtilis
BioPlus 2B ® Porcs, pollastres, dindis Dinamarca B. licheniformis i B. subtilis
Esporafeed Plus ® Porcs Espanya B. cereus
Lactopure ® Pollastres, vedells, porcs Índia B. coagulans *
Neoferm BS 10 ® Pollastres, vedells, porcs França B. clausii
Toyocerin ® Vedells, pollastres, conills i porcs Japó B. cereus

 

Les espècies de Bacillus que veiem en aquestes Taules són les que realment s’hi troben, un cop feta la identificació, ja que molts d’aquests productes estan mal etiquetats com a Bacillus subtilis o fins i tot com a Lactobacillus (Green et al. 1999; Hoa et al 2000). Aquests errors en l’etiquetatge poden ser preocupants per al consumidor, i sobretot per qüestions de seguretat, ja que alguns dels trobats són Bacillus cereus, que s’ha vist que pot ser causa d’infeccions gastrointestinals ja que força soques produeixen enterotoxines (Granum & Lund 1997; Hong et al. 2005)

Els possibles Bacillus probiòtics han estat aïllats de diversos orígens. Per exemple recentment se n’han aïllat alguns B. subtilis de l’esmentat chongkukjang coreà, que tenen bones característiques de resistència a les condicions del tracte gastrointestinal (GI) i activitat antimicrobiana contra Listeria, Staphylococcus, Escherichia i fins i tot contra B. cereus (Lee et al 2017).

Un d’aquests productes farmacèutics més coneguts és l’Enterogermina (Figura 5), amb espores de B. subtilis, que és recomanat per al tractament de desordres intestinals associats a alteracions de la microbiota (Mazza 1994).

Figuresv1 copy.ppt

Figura 5. Enterogermina amb espores de Bacillus subtilis (Cutting 2011)

 

Bacillus al tracte gastrointestinal: hi són ? hi poden sobreviure ?

S’ha discutit si les espores administrades poden germinar al tracte GI. Treballant amb ratolins, Casula & Cutting (2002) han utilitzat B. subtilis modificats, amb un gen quimèric ftsH-lacZ, que s’expressa només en cèl·lules vegetatives, amb el que es poden detectar per RT-PCR fins a només 100 bacteris. D’aquesta manera han vist que les espores germinen en nombres significatius al jejú i a l’ili. O sigui, que les espores podrien colonitzar l’intestí prim, encara que transitòriament.

De manera similar, Duc et al. (2004) han conclòs que les espores de B. subtilis poden germinar al budell perquè després del tractament oral dels ratolins, se n’excreten més espores a la femta que les ingerides, senyal que han pogut proliferar. També han detectat, mitjançant RT-PCR, mRNA dels bacils vegetatius després de l’administració de les espores, i a més a més, s’ha observat que el ratolí genera resposta amb IgG contra cèl·lules vegetatives del bacteri. O sigui, que les espores no serien passavolants transitoris, sinó que germinarien passant a cèl·lules vegetatives, les quals tindrien una interacció activa amb les cèl·lules hoste o la microbiota, augmentant-ne l’efecte probiòtic.

Amb tot això, potser caldria considerar a molts Bacillus no com a al·lòctons al tracte GI, sinó com a bacteris amb un cicle de vida bimodal de creixement i esporulació, tant al medi ambient com dins el tracte GI de molts animals (Hong et al. 2005).

En quant a la presència normal de Bacillus a l’intestí, quan s’estudien els diferents microorganismes habitants del digestiu humà per anàlisi metagenòmic del DNA de la microbiota, el gènere Bacillus no apareix (Xiao et al. 2015). Com veiem (Figura 6), els més habituals són Bacteroides i Clostridium, seguits de diversos enterobacteris i altres, inclosos els bifidobacteris.

Fig 6 Xiao nbt.3353-F2

Figura 6. Els 20 gèneres bacterians més abundants a l’intestí d’humans (dreta) i ratolins (esquerra) (Xiao et al. 2015).

 

Malgrat això, s’han aïllat diverses espècies de Bacillus al tracte GI de pollastres, tractant mostres fecals amb calor i etanol per seleccionar només les espores, seguit d’incubació aeròbica (Barbosa et al. 2005). I més en concret, la presència de B. subtilis a la microbiota d’humans s’ha confirmat mitjançant aïllament selectiu en biòpsies d’ili i també de mostres fecals (Hong et al. 2009). Aquestes soques de B. subtilis presentaven gran diversitat i tenien capacitat de formar biofilms, esporular anaeròbiament i secretar antimicrobians, amb la qual cosa es confirma l’adaptació d’aquests bacteris a l’intestí, i per tant poden ser considerats comensals intestinals, i no solament bacteris del sòl.

 

Seguretat dels Bacillus probiòtics

El consum oral de quantitats importants de microorganismes viables que no són molt usuals al tracte GI posa sobre la taula dubtes addicionals sobre la seguretat. Això encara més en l’ús d’espècies que no tenen una història d’utilització segura en aliments, com és el cas dels bacteris esporulats. Fins i tot els habitants normals de l’intestí poden actuar a vegades com a patògens oportunistes (Sanders et al. 2003).

Amb l’excepció de B. anthracis i B. cereus, les diverses espècies de Bacillus generalment no es consideren patogèniques. Per suposat, les espores de Bacillus són consumides de forma usual sense adonar-se’n amb els aliments i en alguns fermentats. Encara que els Bacillus són reconeguts com a GRAS per a la producció d’enzims, fins ara la FDA no ha garantit l’estatus de GRAS per a cap esporulat amb aplicació com a probiòtic, ni Bacillus ni Clostridium. Mentre que Lactobacillus i Bifidobacterium han estat subjecte de nombroses i rigoroses proves de no toxicitat crònica i aguda, i un munt d’experts han revisat dades i han conclòs que són segurs com a probiòtics, no hi han dades de toxicitat publicades sobre Bacillus en relació al seu ús com a probiòtics. En fer un repàs al Medline d’articles on surti el terme “probiotic” limitant-se a estudis clínics, de 123 referències no hi ha cap on surti Bacillus (Sanders et al. 2003).

En canvi, hi ha alguns estudis clínics on soques de Bacillus han estat detectades com a toxigèniques. Tot això explica que alguns productors de Bacillus probiòtics es refereixen a ells amb l’enganyós nom de Lactobacillus sporogenes, espècie inexistent, com es pot comprovar al NCBI (https://www.ncbi.nlm.nih.gov/taxonomy/?term=lactobacillus+sporogenes).

Finalment, cal recordar l’informe conjunt sobre probiòtics de la FAO (Organització de les Nacions Unides per a l’Alimentació i l’Agricultura) i la OMS (Organització Mundial de la Salut) (FAO/WHO 2006), que suggereix un conjunt de directrius per tal que un producte sigui utilitzat com a probiòtic, tant en forma única com en forma de nou suplement alimentari. Aquestes recomanacions són:

  1. Que el microorganisme estigui ben caracteritzat a nivell d’espècie, utilitzant mètodes fenotípics i genotípics (ex. 16S rRNA).
  2. Que la soca en qüestió estigui dipositada en alguna col·lecció de cultius reconeguda internacionalment.
  3. Avaluació de la soca in vitro per determinar-ne l’absència de factors de virulència: que no sigui citotòxica ni envaeixi cèl·lules epitelials, i que no produeixi enterotoxines o hemolisines o lecitinases.
  4. Determinació de la seva activitat antimicrobiana, i el perfil de resistència, incloent l’absència de gens de resistència i la incapacitat per transferir factors de resistència.
  5. Avaluació preclínica de la seva seguretat en models animals.
  6. Confirmació en animals demostrant-ne la seva eficàcia.
  7. Avaluació en humans (Fase I) de la seva seguretat.
  8. Avaluació en humans (Fase II) de la seva eficàcia (si fa l’efecte esperat) i eficiència (amb el mínim de recursos i el mínim temps).
  9. Etiquetatge correcte del producte, incloent gènere i espècie, dosi precisa i condicions de conservació.

FAO WHO

Conclusions

La utilització de Bacillus com a probiòtics, sobretot en forma de suplements dietètics, està augmentant molt ràpidament. Cada cop més estudis científics demostren els seus beneficis, com estimulació immune, activitats antimicrobianes i competència exclusiva. El seu principal avantatge és que poden ser produïts fàcilment i que el producte final, les espores, és molt estable, amb la qual cosa poden ser incorporats fàcilment al menjar quotidià. A més, hi ha estudis que suggereixen que aquests bacteris poden multiplicar-se al tracte GI i poden ser considerats com a residents temporals (Cutting 2011).

D’altra banda, cal demanar un major rigor en la selecció i control dels Bacillus utilitzats, ja que alguns, si no han estat ben identificats, podrien ser causa de trastorns intestinals. En qualsevol cas, donat que el nombre de productes venuts com a probiòtics que contenen els esporulats Bacillus està augmentant molt, cal no donar per suposat que tots són segurs i cal avaluar cas per cas (Hong et al 2005).

 

Bibliografia

Barbosa TM, Serra CR, La Ragione RM, Woodward MJ, Henriques AO (2005) Screening for Bacillus isolates in the broiler gastrointestinal tract. Appl Environ Microbiol 71, 968-978.

Casula G, Cutting SM (2002) Bacillus probiotics: Spore germination in the gastrointestinal tract. Appl Environ Microbiol 68, 2344-2352.

Chukeatirote E (2015) Thua nao: Thai fermented soybean. J Ethnic Foods 2, 115-118.

Cutting SM (2011) Bacillus probiotics. Food Microbiol 28, 214-220.

Duc LH, Hong HA, Barbosa TM, Henriques AO, Cutting SM (2004) Characterization of Bacillus probiotics available for human use. Appl Environ Microbiol 70, 2161-2171.

FAO/WHO (2006) Probiotics in food. Health and nutritional properties and guidelines for evaluation. Fao Food and Nutrition Paper 85. Reports of Joint FAO/WHO expert consultations.

Fontana L, Bermudez-Brito M, Plaza-Diaz J, Muñoz-Quezada S, Gil A (2013) Sources, isolation, characterization and evaluation of probiotics. Brit J Nutrition 109, S35-S50.

Granum, P. E., T. Lund (1997) Bacillus cereus and its food poisoning toxins. FEMS Microbiol. Lett. 157:223–228.

Green, D. H., P. R. Wakeley, A. Page, A. Barnes, L. Baccigalupi, E. Ricca, S. M. Cutting (1999) Characterization of two Bacillus probiotics. Appl Environ Microbiol 65, 4288–4291.

Hoa, N. T., L. Baccigalupi, A. Huxham, A. Smertenko, P. H. Van, S. Ammendola, E. Ricca, A. S. Cutting (2000) Characterization of Bacillus species used for oral bacteriotherapy and bacterioprophylaxis of gastrointestinal disorders. Appl Environ Microbiol 66, 5241–5247.

Hong HA, Dic LH, Cutting SM (2005) The use of bacterial spore formers as probiotics. FEMS Microbiol Rev 29, 813-835.

Hong HA, Khaneja R, Tam NMK, Cazzato A, Tan S, Urdaci M, Brisson A, Gasbarrini A, Barnes I, Cutting SM (2009) Bacillus subtilis isolated from the human gastrointestinal tract. Res Microbiol 160, 134-143.

Lee S, Lee J, Jin YI, Jeong JC, Hyuk YH, Lee Y, Jeong Y, Kim M (2017) Probiotic characteristics of Bacillus strains isolated from Korean traditional soy sauce. LWT – Food Sci Technol 79, 518-524.

Mazza P (1994) The use of Bacillus subtilis as an antidiarrhoeal microorganism. Boll Chim. Farm. 133, 3-18.

Nimrat S, Suksawat S, Boonthai T, Vuthiphandchai V (2012) Potential Bacillus probiotics enhance bacterial numbers, water quality and growth during early development of white shrimp (Litopenaeus vannamei). Veterinary Microbiol 159, 443-450.

Phromraksa P, Nagano H, Kanamaru Y, Izumi H, Yamada C, Khamboonruang C (2009) Characterization of Bacillus subtilis isolated from asoian fermented foods. Food Sci Technol Res 15, 659-666.

Sanders ME, Morelli L, Tompkins TA (2003) Sporeformers as human probiotics: Bacillus, Sporolactobacillus, and Brevibacillus. Compr Rev Food Sci Food Safety 2, 101-110

Vaseeharan, B., P. Ramasamy (2003) Control of pathogenic Vibrio spp. by Bacillus subtilis BT23, a possible probiotic treatment for black tiger shrimp Penaeus monodon. Lett Appl Microbiol 36, 83–87

World Gastroenterology Organisation Global Guidelines (2011) Probiotics and Prebiotics.

Xiao et al. (2015) A catalog of the mouse gut metagenome. Nature Biotechnol 33, 1103-1108.

Fig 0 pinterest-com cool bacillus-subtilis-science-comics

Un nou probiòtic activa la microbiota contra el càncer de fetge

Click here for the english version:  A new probiotic modulates gut microbiota against hepatocellular carcinoma

13 juliol 2016

Els darrers anys s’han anat desvetllant els efectes beneficiosos de la microbiota intestinal humana sobre diversos marcadors de la salut, com la inflamació, la resposta immune, les funcions metabòliques i el pes, així com la importància que tenen aquests bacteris simbiòtics nostres. En relació a la nostra microbiota vegeu per exemple aquests altres posts del meu blog: “Els clostridis bons ens eviten al·lèrgies“, “Bacteris controlant el que mengem” o “Bacteris de la llet materna“.

Al mateix temps s’ha vist que els probiòtics poden ser una bona solució per a moltes malalties amb la microbiota intestinal afectada. Efectivament, s’ha demostrat el paper beneficiós dels probiòtics per tal de reduir la inflamació gastrointestinal i prevenir el càncer colorectal.

Ara bé, recentment s’ha observat que els probiòtics poden tenir efectes beneficiosos en altres parts del cos més enllà del tracte gastrointestinal, en concret amb efectes immunomoduladors sobre un carcinoma hepatocel·lular (CHC). En efecte, investigadors de la Universitat de Hong Kong, juntament amb altres de la Universitat de Finlàndia Oriental, han publicat un estudi (Li et al, PNAS, 2016) en aquest sentit, en el qual han vist reduccions del 40% del pes i mida del tumor CHC del fetge de ratolins als que se’ls havia administrat un nou producte barreja de probiòtics, “Prohep”.

El carcinoma hepatocel·lular (CHC) és el tipus més usual de càncer de fetge, és el 2n càncer més mortal, i força abundant en llocs amb taxes altes d’hepatitis. A més, el fàrmac més utilitzat per reduir la proliferació del tumor, el sorafenib, és caríssim. El cost d’aquest inhibidor multiquinasa és de 3400€, per a les 112 pastilles de 200 mg del tractament recomanat de 4 pastilles al dia durant un mes. En canvi, qualsevol tractament amb probiòtics que s’arribés a demostrar que fos eficaç i pogués substituir aquest fàrmac, seria molt més econòmic.

La nova barreja de probiòtics Prohep està compost per diversos bacteris: Lactobacillus rhamnosus GG (LGG), Escherichia coli Nissle 1917 (EcN), i el conjunt inactivat pel calor VSL#3 (1:1:1), que conté Streptococcus thermophilus, Bifidobacterium breve, Bf. longum, Bf. infantis, Lb. acidophilus, Lb. plantarum, Lb. paracasei, i Lb. delbrueckii.

En el treball esmentat, Li et al. (2016) van alimentar ratolins amb el Prohep durant una setmana abans d’inocular-los un tumor al fetge, i van observar una reducció del 40% del pes i mida del tumor en comparació als animals control. Com veiem a la Figura 1, l’efecte és significatiu als 35 dies, i també per als que se’ls administra el Prohep el mateix dia de la inoculació del tumor. Lògicament, l’efecte de reducció és molt més manifest en administrar un compost antitumoral com Cisplatina.

Aquests investigadors van veure que la reducció del tumor era degut a la inhibició de l’angiogènesi, el procés que fa generar nous vasos sanguinis a partir dels existents, cosa essencial per al creixement tumoral. Relacionat amb la reducció tumoral, van trobar nivells alts del GLUT-1+ hipòxic, o sigui, que al tumor hi havia hipòxia causada pel menor flux sanguini, ja que aquest era un 54% menor, respecte als controls.

 

Fig 1 Li-Fig1B tumor size - days tumor

Figura 1. Variació de mida del tumor. ProPre: administració de Prohep 1 setmana abans d’inoculació del tumor; ProTreat: administració de Prohep el mateix dia d’inoculació del tumor; Cisplatin: administració d’aquest antitumoral. (Fig 1 B de Li et al, 2016).

 

També van determinar que hi havia una menor quantitat del factor angiogènic proinflamatori IL-17 i de les cèl·lules Th17 del sistema immune, que s’associen també al càncer. La menor inflamació i angiogènesi limiten el creixement del tumor.

I a més a més, aquests investigadors van establir que aquests efectes beneficiosos de l’administració dels probiòtics estava relacionats amb l’abundància de bacteris beneficiosos de la microbiota intestinal pròpia dels ratolins, que analitzaren per metagenòmica. O sigui, que els probiòtics modulen la microbiota, afavorint alguns bacteris propis, que són els que produeixen metabòlits antiinflamatoris com la citoquina IL-10 i que suprimeixen la diferenciació de les cèl·lules Th17.

 

Fig 2 gut microbiota Eye of Science

Figura 2. Bacteris de la microbiota intestinal humana al microscopi electrònic de rastreig (SEM) (Imatge colorejada, de Eye of Science / Science Source)

 

Alguns d’aquests bacteris de la microbiota identificats per metagenòmica als ratolins que se’ls havia administrat el Prohep són Prevotella i Oscillibacter. El primer és un bacteri gram-negatiu bacteroidal, que és abundant a la microbiota de nen africans rurals amb dietes riques en carbohidrats. Oscillibacter és un gram-positiu clostridial, que es coneix als humans com a productor del neurotransmissor GABA. Són un exemple més de la importància d’alguns bacteroidals i clostridials en la microbiota intestinal, ja que en són majoria, i malgrat que no són ni molt menys utilitzats com a probiòtics, cada cop se’ls troba més funcions positives, com per exemple evitant al·lèrgies (Els clostridis bons ens eviten al·lèrgies).

Se sap que aquests bacteris produeixen metabòlits antiinflamatoris i per tant serien els principals implicats en regular l’activitat de les cèl·lules immunes que propicien el creixement del tumor. La reducció del tumor observada en aquests experiments amb ratolins seria efecte de l’acció combinada dels mateixos bacteris probiòtics administrats junt amb la microbiota pròpia afavorida per aquests. Veiem un possible esquema d’aquestes accions a la Figura 3.

 

Fig 3 Sung fig 2

Figura 3. Diagrama simplificat dels possibles mecanismes dels bacteris intestinals influint sobre la polarització de les cèl·lules Th17 de la làmina pròpia de la mucosa intestinal. Els bacteris de la microbiota activarien les cèl·lules dendrítiques, les quals segreguen citoquines (IL-22, IL-23, IL-27). Els bacteris poden promoure la immunitat de Th17 induint IL-23, que pot estar involucrada mitjançant la senyal de lligands TLR, o ATP extracel·lular o l’amiloide A sèric (SAA). Mentrestant, algunes soques probiòtiques podrien inhibir el desenvolupament de Th17 per la via de la producció de IL-12 i IL-27, a banda d’afavorir el creixement i colonització dels bacteris propis que indueixen Th17 (Sung et al 2012, Fig. 2).

 

Encara que ja sabem que la progressió dels càncers és un procés molt complex, i que als microambients del tumor hi ha una infiltració de molts diversos tipus de cèl·lules del sistema immunitari com cèl·lules T, neutròfils, cèl·lules killer, macròfags, etc, la subpoblació de cèl·lules helper Th17 sembla que és prevalent en la progressió dels tumors, i per tant, aquests efectes dels probiòtics i la microbiota obren bones perspectives.

Encara és aviat per dir si aquests descobriments contribuiran a un tractament del càncer de fetge humà, i per tant calen investigacions en humans per veure si aquests probiòtics podrien ser utilitzats com a tal o en tàndem amb algun fàrmac, en funció del estadi i mida del tumor. En qualsevol cas, s’obre un nou ventall de possibilitats de recerca dels mecanismes moleculars dels efectes beneficiosos dels probiòtics més enllà del tracte intestinal.

 

Bibliografia

El-Nezami H (2016 april 27) HKU develops novel probiotic mixture “Prohep” that may offer potential therapeutic effects on liver cancer. The University of Hong Kong (HKU) 27 Apr 2016

El-Nezamy H, Lee PY, Huang J, Sung YJ (2015) Method and compositions for treating cancer using probiotics. Patent WO 2015021936 A1

Li J, Sung CYJ, Lee N, Ni Y, Pihlajamäki J, Panagiotou G, El-Nezami H (2016) Probiotics modulated gut microbiota suppresses hepatocellular carcinoma growth in mice. PNAS E1306-E1315

Oelschlaeger TA (2010) Mechanisms of probiotic actions – A review. Int J Med Microbiol 300, 57-62

Packham C (2016) Probiotics dramatically modulate liver cancer growth in mice. Medical Press, Med Research 23 Feb 2016

Silgailis M (2016) Treating some cancers with probiotics in the future ? Probiotic Prohep. Lacto Bacto: Health, Microbes and More 23 Feb 2016

Sung CYJ, Lee NP, El-Nezami H (2012) Regulation of T helper by bacteria: an approach for the treatment of hepatocellular carcinoma. Int J Hepatology ID439024, doi:10.1155/2012/439024

UEF News and Events (2016) A novel probiotic mixture may offer potential therapeutic effects on hepatocellular carcinoma. University of Eastern Finland 1 Mar 2016

 

Microbiota de la pell humana, en part compartida amb el gos de casa

Click here for the english version: Human skin microbiota partly shared with the dog

17 novembre 2015

Diversitat de la microbiota humana a les diferents parts del cos i entre individus

Com havia comentat en altres posts anteriors d’aquest blog (Clostridis bons del budell 1 març 2015; Bacteris controlant el que mengem 8 set 2014; Bacteris de la llet materna 26 gener 2013), cada cop es fa més patent la importància que té la microbiota del nostre cos, o sigui el conjunt de microorganismes, sobretot bacteris, amb els quals convivim.

La microbiota humana varia d’un individu a un altre, en relació a la dieta, l’edat i les característiques fenotípiques i genètiques de cadascú. I a més, com que no vivim aïllats, també hi influeix l’entorn, o sigui les altres persones amb les que interactuem, i és clar, els altres animals amb que convivim, com els gossos i altres animals domèstics. Tots plegats també tenen microbiota pròpia.

El cos humà és la llar de molts microorganismes diferents, amb bacteris (i arquees), fongs i virus que viuen a la pell, a l’intestí i en diversos altres llocs en el cos (Figura 1). Si bé molts d’aquests microbis són beneficiosos als seus hostes humans, sabem poc sobre la majoria d’ells. Les primeres investigacions es van centrar en la comparació dels microorganismes que es troben en individus sans amb els que es troben en les persones que pateixen d’una malaltia en particular. Més recentment els investigadors s’han interessat en les qüestions més generals, com entendre com s’estableix aquesta microbiota i conèixer les causes de les similituds i diferències entre la microbiota de diferents individus.

 

Fig 1 Marsland

Figura 1. Proporcions de tipus de microorganismes que habiten a les diferents parts del cos humà: bacteris (cercles grans), fongs (cercles petits dreta) i virus (cercles petits esquerra) (Marsland & Gollwitzer 2014)

 

Ara ja se sap que les comunitats de microorganismes que es troben en els intestins de les persones relacionades genèticament tendeixen a ser més similars que els de les persones que no estan relacionades. D’altra banda, les comunitats microbianes que es troben en els intestins dels adults no relacionats que viuen a la mateixa llar són més similars que les dels adults no relacionats que viuen en diferents llars (Yatsunenko et al 2012). No obstant això, tots aquests estudis s’han centrat en l’intestí, i poc se sap sobre l’efecte de la relació, la convivència i l’edat en la microbiota en altres parts del cos, com és el cas de la pell.

 

Microbiota de la pell humana

La pell és un ecosistema d’uns 1,8 m2 de diversos hàbitats, amb plecs, invaginacions i nínxols especialitzats que acullen molts tipus de microorganismes. La funció principal de la pell és com a barrera física, protegint el cos d’assalts potencials per part d’organismes estranys o substàncies tòxiques. Com que també és la interfase amb l’ambient extern, està colonitzat per diversos microorganismes, incloent bacteris, fongs, virus, així com àcars (Figura 2). A la superfície destaquen proteobacteris, propionibacteris i estafilococs i alguns fongs com Malassezia (un basidiomicet amb un estadi unicel·lular i un altre micelià). Els àcars (en anglès mites) com Demodex folliculorum viuen al voltant dels fol·licles pilosos. Molts d’aquests microorganismes són innocus i a vegades aporten funcions vitals que el genoma humà no ha adquirit evolutivament. Els microorganismes simbiòtics protegeixen front a altres microbis patogènics o nocius. (Grice & Segre 2011).

Fig 2 Grice

Figura 2. Esquema de secció de pell humana amb els diversos microorganismes presents (Grice & Segre 2011).

 

En conseqüència amb la comentada diversitat de la microbiota, aquesta també és molt variada segons la regió de la pell que considerem (Figura 3), i per tant segons els diversos microambients, que com veiem poden ser de 3 característiques diferents: sebacis o oliosos, humits i secs.

Fig 3 Grice

Figura 3. Distribució topogràfica dels tipus de bacteris en diferents llocs de la pell (Grice & Segre 2011)

 

La pell és un complex entramat estructural, hormonal, nerviós, immunològic i microbià i en aquest sentit s’ha comprovat que la microbiota resident col·labora amb el sistema immune, especialment en la reparació de les ferides (Figura 4). Com veiem, en concret l’àcid lipoteicoic (LTA), integrant de la paret cel·lular bacteriana, alliberat per Staphylococcus epidermidis, estimula els receptors tipus Toll (Toll-Like Receptor) TLR2, que indueixen la producció de pèptids antimicrobians, i també s’estimulen els queratinòcits de l’epidermis via els TLR3 per desencadenar l’inflamació, amb producció d’interleucina i atracció de leucòcits (Heath & Carbone 2013). Tot plegat per assegurar la protecció homeostàtica i la defensa enfront possibles patògens. Més informació també a la revisió de Belkaid & Segre (2014).

Fig 4 Heath Fig1 ni.2680-F1

Figura 4. Contribució de la microbiota resident a la immunitat i la reparació de ferides (Heath & Carbone 2013)

 

A casa compartim microbiota, i amb el gos

Com dèiem al principi, l’entorn influeix en la microbiota d’un individu, i per tant, individus que viuen junts tendeixen a compartir part de la microbiota. Efectivament, això fou recentment estudiat per Song et al (2013), amb 159 persones i 36 gossos de 60 famílies (unitats conjugals amb nens i/o gossos). Els van estudiar la microbiota intestinal, de la llengua i de la pell. Van extreure el DNA d’un total de 1076 mostres, amplificant-ne la regió V2 del gen 16S rRNA amb encebadors específics, i van procedir a una seqüenciació multiplex d’alt rendiment (High-Throughput Sequencing) amb un equip Illumina GA IIx. En van obtenir un total d’uns 58 milions de seqüències, amb una mitjana de 54.000 per mostra, que van ser analitzades contrastant amb les bases de dades per saber quins tipus bacterians i en quines proporcions.

Els resultats foren que les comunitats microbianes eren més similars entre sí en individus que viuen junts, i sobretot les de la pell, més que no les intestinals o de la llengua. Això era cert per a totes les comparacions, incloent parelles d’humans, i parelles gos-humà. Com veiem a la Figura 5, el nombre de tipus bacterians compartits és més gran entre diferents parts (front, palmells de les mans i polpes dels dits del gos) de la pell del l’humà i el seu propi gos (barres blaves), que no de l’humà amb gossos d’altres famílies (barres vermelles), o dels gossos amb persones que no en tenen (barres verdes). També veiem que el nombre de tipus bacterians compartits és molt menor en comparar mostres fecals o la llengua (Song et al 2013).

Fig 5 Song

Figura 5. Nombres de filotipus (tipus filogenètics) bacterians compartits entre adults i els seus gossos (blau), els adults amb gossos d’altres (vermell) i adults que no tenen gossos amb gossos. Es comparen (gos-humà) fronts, mans, polpes de les potes, i també mostres fecals (stool) i llengües. Significativitat de ser diferents: *p<0.05, **p<0.001 (Song et al 2013)

 

Això suggereix que els humans probablement adquireixen molts dels microorganismes en la pell per contacte directe amb el seu entorn, i que els éssers humans tendeixen a compartir més microbis amb els individus, incloent a les seves mascotes, amb els que estan en contacte freqüent. Song et al. (2013) també van descobrir que, a diferència del que passa a l’intestí, les comunitats microbianes en la pell i la llengua dels lactants i els nens eren relativament similars a les dels adults. En general, aquestes troballes suggereixen que les comunitats microbianes que es troben a l’intestí canvien amb l’edat d’una manera que difereix significativament dels que es troben a la pell i la llengua.

Encara que no és el motiu principal d’aquest post, breument es pot comentar que globalment la microbiota intestinal dels gossos no és molt diferent de la dels humans en nombres (1011 per gram) i diversitat, si bé amb més proporció de Gram-positius (aprox. 60% clostridials, 12% lactobacils, 3% bifidobacteris i 3% corinebacteris) i menys Gram-negatius (2% bacteroides, 2% proteobacteris) (García-Mazcorro & Minamoto 2013).

 

Menys asma als infants que conviuen amb gossos

I encara que no s’ha acabat de demostrat la relació amb el que hem comentat de la microbiota, darrerament s’han trobat evidències dels beneficis de tenir gos per a la salut física, i no només psíquica. Uns investigadors suecs (Fall et al 2015) han fet un estudi amb tots els nadons nascuts (1 milió) a Suècia de 2001 al 2010, comptant els que patien asma als 6 anys. Com que els suecs tenen registre de tots els gossos també des de 2001, aquests investigadors han pogut relacionar la presència de gos a casa durant el primer any del nadó amb l’aparició d’asma o no als infants, i han arribat a la conclusió que els nens tenen un risc menor d’asma (un 50% menys) si s’han criat en presència d’un gos.

Resultats semblants s’han obtingut per a nens criats en granges o en ambients rurals, i per tant amb contacte amb altres animals. Tot plegat estaria d’acord amb l’anomenada “hipòtesi de la higiene”, segons la qual la menor incidència d’infeccions als països occidentals, i sobretot als “urbanites”, seria la causa de l’augment de malalties autoimmunes i al·lèrgies (Okada et al 2010). En línia amb hipòtesi, es creu que el sistema immune humà es beneficia de la convivència amb gossos o altres animals degut al fet de compartir part de la microbiota. Tanmateix, en aquests nens suecs que convivien amb gossos i tenien menys risc d’asma es detectà un lleuger risc de malaltia pneumòccica, cosa que lliga amb la hipòtesi esmentada: més infeccions i menys al·lèrgies (Steward 2015), però amb l’avantatge de què les infeccions són més fàcils de tractar, o prevenir amb vacunes.

Fig 0 stray-dog-saves-baby

 

Bibliografia

Belkaid Y, Segre JA (2014) Dialogue between skin microbiota and immunity. Science 346, 954-959

Fall T, Lundholm C, Örtqvist AK, Fall K, Fang F, Hedhammar A et al (2015) Early exposure to dogs and farm animals and the risk of childhood asthma. JAMA Pediatrics 69, 11, e153219

García-Mazcorro JF, Minamoto Y (2013) Gastrointestinal microorganisms in cats and dogs: a brief review. Arch Med Vet 45, 111-124

Heath WR, Carbone FR (2013) The skin-resident and migratory immune system in steady state and memory: innate lymphocytes, dendritic cells and T cells. Nature Immunology 14, 978-985

Marsland BJ, Gollwitzer ES (2014) Host–microorganism interactions in lung diseases. Nature Reviews Immunology 14, 827-835

Okada H, Kuhn C, Feillet H, Bach JF (2010) The “hygiene hypothesis” for autoimmune and allergic diseases: an update. Clin Exp Immunol 160, 1-9

Song SJ, Lauber C, Costello EK, Lozupone, Humphrey G, Berg-Lyons D, et al (2013) Cohabiting family members share microbiota with one another and with their dogs. eLife 2, e00458, 1-22

Steward D (2015) Dogs, microbiomes, and asthma risk: do babies need a pet ? MD Magazine, Nov 03

Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, et al. 2012. Human gut microbiome viewed across age and geography. Nature 486, 222–7

 

 

El panda gegant és herbívor però té una microbiota intestinal de carnívor

Click here for the english version: The giant panda is herbivore but has the gut microbiota of a carnivore

26 agost 2015

El panda gegant (Ailuropoda melanoleuca, literalment en grec “peu de gat negre i blanc”) és una de les espècies de mamífers més intrigants evolutivament. Malgrat la seva dieta exclusivament herbívora, filogenèticament és com un ós, ja que és de la família Úrsids, dins l’ordre Carnívors. La seva dieta és 99% de bambú i l’altre 1% és mel, ous, peix, taronges, plàtans, nyams i fulles d’arbusts.

Viu en algunes serralades de la Xina central, principalment a la província de Sichuan, i també a les províncies de Shaanxi i Gansu. Degut a la construcció de granges, desforestació i altres desenvolupaments, el panda ha estat foragitat de les terres baixes on havia viscut. És una espècie en perill d’extinció que necessita protecció. Hi han uns 300 en captivitat i uns 3000 en llibertat. Malgrat que els nombres estan augmentant, segueix en perill d’extinció, sobretot pel seu espai limitat (uns 20.000 km2) i l’hàbitat molt específic (boscos de bambú).

Fig0 panda bamboo

Així doncs, el panda gegant té una dieta quasi exclusiva de diferents espècies de bambú, sobretot de fulles i tiges, molt fibroses, i els brots tendres a la primavera i estiu. És per tant una dieta de poca qualitat digestiva, amb poca proteïna i molta fibra i contingut de lignina. Es passen unes 14 h al dia menjant, i poden arribar a ingerir uns 12 kg de bambú al dia.

La majoria d’herbívors tenen modificacions del tracte digestiu que ajuden a la retenció de l’aliment en procés de digestió, i contenen poblacions microbianes que els permeten utilitzar com a menja exclusiva els materials vegetals rics en polisacàrids complexos, com la cel·lulosa i hemicel·lulosa. Aquestes especialitzacions poden ser la compartimentació de l’estómac, típica dels remugants i altres no remugants (cangurs, hàmster, hipopòtams i alguns primats) o bé l’engrandiment de l’intestí gros, característic dels èquids, alguns rosegadors i els lagomorfs (conills i llebres).

En canvi, i malgrat el seu règim exclusivament herbívor, sorprenentment el panda gegant té un tracte gastrointestinal típic dels carnívors, anatòmicament similar als del gos, el gat o l’ós rentador, amb un estómac simple, té el cec degenerat i el còlon és molt curt. El tracte gastrointestinal dels pandes és unes 4 vegades la mida del cós, com altres carnívors, mentre que als herbívors és unes 10-20 vegades el cós, per tal de digerir eficientment grans quantitats de farratge. Amb això, el temps del trànsit intestinal del panda és molt curt, menys de 12 h. Tot això limita molt la capacitat de possibilitats fermentatives dels materials vegetals (Williams et al. 2013).

Per aquests motius, la digestió del bambú per al panda és molt ineficient, malgrat la seva dependència. Els pandes consumeixen l’equivalent al 6% del seu pes corporal per dia, amb una digestibilitat de la matèria seca del bambú del 20%. D’aquest, un 10% correspon a la poca proteïna que conté el bambú, i la resta és dels polisacàrids, en concret amb uns coeficients de digestió del 27% per a les hemicel·luloses i del 8% per a la cel·lulosa.

Sembla com si el panda gegant s’hagués especialitzat en el consum d’una planta amb alt contingut en fibra, sense haver modificat l’aparell digestiu, a base d’una masticació eficient, ingerint-ne grans quantitats, digerint els continguts cel·lulars enlloc de les parets cel·lulars vegetals, i excretant ràpidament els residus no digerits (Dierenfield et al. 1982).

A més a més, tenir una dependència d’un sol tipus de planta com és el bambú pot comportar mancances nutricionals segons els cicles estacionals de la planta. En aquest sentit, recentment (Nie et al. 2015) s’han estudiat les concentracions de calci, fòsfor i nitrogen de les diferents parts del bambú que mengen una població de pandes lliures. Han vist que els pandes dins del seu hàbitat fan una migració estacional en dues zones de diferent alçada al llarg de l’any i que s’alimenten de dues espècies diferents de bambú. Ambdues espècies tenen més calci a les fulles i més fòsfor i nitrogen a les tiges. Com que la variació estacional d’aparició i caiguda de fulles de les 2 espècies és diferent a causa de la diferent alçada, quan els pandes són en una de les zones mengen les fulles d’una de les espècies i les tiges de l’altre, mentre que ho fan al revés quan són a l’altra zona. O sigui, que els pandes sincronitzen les seves migracions estacionals per tal de treure’n el màxim rendiment nutricional d’ambdues especies de bambú.

Un altre inconvenient de la dependència del bambú és la seva floració. És un fenomen natural que passa cada 40-100 anys, i quan el bambú floreix, es mor, reduint la disponibilitat de menjar per als pandes. Pels anys 1970-1980 hi hagués dues floracions a gran escala a l’hàbitat dels pandes, i hi van haver més de 200 morts per aquesta raó. Tanmateix, i donat que segurament els pandes s’han trobat en la seva evolució amb moltes altres floracions massives, quan s’hi troben cerquen altres espècies de bambú o recorren llargues distàncies per cobrir les seves necessitats alimentàries (Wei et al. 2015).

En compensació, i com a adaptació a aquest menjar tant específic, el panda gegant té una sèrie de característiques morfològiques úniques, com unes fortes mandíbules i molars molt poderosos, i sobretot un pseudo-polze, com si tingués 6 dits, que és l’ós sesamoide radial engrandit, fent com un polze oposable, que li serveix per agafar millor les canyes de bambú (Figura 1).

Fig1 panda's thumb

Figura 1. El pseudo-polze del panda gegant. Imatge treta de Herron & Freeman (2014).


I cóm és que el panda va passar a ser herbívor ?

S’ha estimat que el precursor del panda gegant, omnívor com altres úrsids, va començar a menjar bambú com a mínim fa 7 milions d’anys (Ma), i va esdevenir completament dependent del bambú entre 2 i 2,4 Ma. Aquest canvi de dieta probablement va anar lligat a diverses mutacions al seu genoma, donant lloc a defectes del metabolisme de la dopamina en relació a l’apetència per la carn, i sobretot de la pseudogenització del gen Tas1r1 (Figura 2), del receptor del gust d’umami (Jin et al. 2011). L’umami és un dels 5 gustos bàsics, junt amb el dolç, salat, àcid i amarg, i ve a ser com el gust “saborós”, que normalment recorda la carn, i està relacionat amb el L-glutàmic, abundant a la carn. Aquesta mutació que feia prescindir al panda del gust umami afavorí la pèrdua d’apetit del panda per la carn i reforçà el seu estil de vida herbívor. Tanmateix, probablement altres factors addicionals devien estar implicats, ja que el gen Tas1r1 està intacte en herbívors com el cavall i la vaca (Zhao et al. 2010).

Fig2 Zhao F1 large

Figura 2. Arbre filogenètic d’alguns carnívors amb les dates per al panda gegant deduïdes dels fòssils (en blau) i de l’estudi molecular del gen TasTr1 fet per Zhao et al. (2010).


La microbiota intestinal del panda

Com era d’esperar, en fer la seqüenciació del genoma complet del panda gegant (Li et al. 2010) no s’han trobat gens específics responsables de la digestió de la cel·lulosa i hemicel·luloses. Lògicament, la possible digestió d’aquests polisacàrids complexos de les fibres del bambú aniria a càrrec dels microorganismes cel·lulolítics del tracte intestinal. Cal estudiar per tant si hi són al panda.

En estudiar les seqüències del 16S ribosomal de les microbiotes fecals dels diversos mamífers s’observa en general un augment de la diversitat bacteriana en sentit carnívors – omnívors – herbívors (Ley et al. 2008). Aquesta diversitat és menor en els pandes que als herbívors, i com veiem a la Figura 3, els pandes queden agrupats amb els carnívors (cercles vermells) malgrat ser herbívors del punt de vista de dieta.

Fig3 Ley

Figura 3. Anàlisi de components principals (PC) de les comunitats bacterianes fecals de mamífers amb diferents colors segons la dieta predominant (Ley et al. 2008)


La microbiota intestinal de la majoria dels herbívors conté sobretot bacteris anaerobis dels grups de Bacteroides, Clostridials, Fibrobacterals i Espiroquetals, que tenen les capacitats enzimàtiques per degradar els materials fibrosos vegetals i així proveeixen de nutrients als seus hostes. Al contrari, els omnívors i sobretot els carnívors tenen una microbiota predominant d’anaerobis facultatius, com les Enterobacteriaceae, a banda d’alguns Firmicutes, que inclouen Clostridials i alguns Lactobacil als, i Bacteroides.

En quant al panda gegant, els primers estudis fets amb mètodes tradicionals dependents de cultiu i anàlisi dels gens 16S rRNA amplificats (Wii et al. 2007) van identificar les Enterobacteriaceae i Streptococcus com a predominants en la microbiota intestinal. Per tant, aquest estudi suggeria que la microbiota del panda és molt semblant a la dels carnívors, com veiem en l’estudi comentat comparatiu de diversos mamífers (Ley et al. 2008), i per tant amb molt poca capacitat d’utilitzar cel·lulosa o hemicel·lulosa.

Tanmateix, un estudi posterior fet amb tècniques de seqüenciació del 16S (Zhu et al. 2011) a partir de mostres fecals de 15 pandes gegants va arribar a unes conclusions ben diferents i semblava que van trobar per primer cop proves de la digestió de cel·lulosa per la microbiota del panda gegant. En analitzar 5500 seqüències, van trobar 85 tàxons diferents, dels quals el 83% eren Firmicutes (Figura 4), i entre aquests n’hi havia 13 tàxons de Clostridium (7 d’ells exclusius dels pandes), i alguns d’aquests amb capacitat de digestió de cel·lulosa. A més, amb anàlisi metagenòmica d’alguns dels pandes van trobar alguns gens putatius per a enzims per digerir cel·lulosa, beta-glucosidasa i xilan-1,4-beta-xilosidasa per a aquests Clostridium. Tot plegat, van concloure que la microbiota del panda gegant tenia una moderada capacitat de degradació dels materials cel·lulòsics.

Fig4 Zhu 2011-Fig1C

Figura 4. Percentatges de seqüències dels principals grups bacterians trobats a les mostres fecals d’individus de panda gegant salvatges (W1-W7) i en captivitat (C1-C8) segons Zhu et al. (2011). Sota cada individu s’indica el n. de seqüències analitzades.


Però, tot just fa dos mesos s’ha publicat un treball (Xue et al. 2015) que sembla tornar enrere, concloent que la microbiota intestinal del panda gegant és molt semblant a la dels carnívors i poca cosa té d’herbívora. És un treball exhaustiu de seqüenciació massiva d’última generació del 16S rDNA amb mostres fecals de 121 pandes de diferents edats al llarg de tres estacions de l’any. Han obtingut unes 93000 seqüències, corresponents a 781 tàxons diferents.

Han trobat una predominança de Enterobacteriaceae i de Streptococcus (vermell fosc i blau fosc respectivament, Figura 5 A), i molts pocs representants dels probables cel·lulolítics com els Clostridials. A més, aquests no es veuen augmentats quan hi ha més fulles i tiges de bambú disponibles (fase T3). Aquests resultats es corresponen amb el que ja se sabia del baix nombre de gens de cel·lulases i hemicel·lulases, un 2%, fins i tot menor que al microbioma dels humans. Aquesta negligible contribució de la microbiota a la digestió de la cel·lulosa, junt amb el fet comentat que el panda és força ineficient digerint el bambú, contradiu la hipotètica importància de la digestió per part de la microbiota que s’havia suggerit pocs anys abans, com hem vist abans.

A més, en aquest treball s’ha vist molta varietat de composició de microbiota entre individus (Figura 5 B).

Fig5 Xue F1 large

Figura 5. Composició de la microbiota intestinal de 121 pandes gegants, amb (A) els gèneres dominants a totes les mostres i (B) la contribució relativa dels gèneres dominants a cada individu, agrupats per edat i temps de mostreig (Xue et al. 2015).


En aquest treball, quan han fet l’anàlisi comparativa entre la composició de la microbiota intestinal del panda gegant amb la d’altres mamífers de les diferents dietes, han confirmat que el panda s’agrupa altre cop amb els carnívors i queda ben lluny dels herbívors (Figura 6).

Fig6 Xue Fig4

Figura 6. Anàlisi de components principals de les comunitats de les microbiotes de mostres fecals de 121 pandes gegants (formes en blanc), en comparació amb les d’altres herbívors (verd), omnívors (blau) i carnívors (vermell). Les diferents formes corresponen a diferents treballs: els cercles són de Xue et al. (2015), el treball d’on s’ha tret la Figura.


Tot plegat, les característiques peculiars de la microbiota del panda gegant contribueixen al perill d’extinció que pateix. Al contrari que la majoria d’altres espècies de mamífers que han evolucionat les seves microbiotes i anatomies digestives optimitzant-les per a les seves dietes específiques, l’aberrant coevolució del panda, la seva microbiota i la seva dieta particular, és ben bé enigmàtica. Per aclarir-ho i saber com preservar aquest animal amenaçat, caldrà seguir estudiant-ho combinant metagenòmica, metatranscriptòmica, metaproteòmica i meta-metabolòmica per conèixer bé la estructura i el metabolisme de la microbiota intestinal i la seva relació amb les funcions digestives i l’estatus nutritiu del panda gegant (Xue et al. 2015).

Referències

Dierenfield ES, Hintz HF, Robertson JB, Van Soest PJ, Oftedal OT (1982) Utilization of bamboo by the giant panda. J Nutr 112, 636-641

Herron JC, Freeman S (2014) Evolutionary Analysis, 5th ed. Benjamin Cummings

Jin K, Xue C, Wu X, Qian J, Zhu Y et al. (2011) Why Does the Giant Panda Eat Bamboo? A Comparative Analysis of Appetite-Reward-Related Genes among Mammals. PLos One 6, e22602

Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR et al. (2008) Evolution of Mammals and Their Gut Microbes. Science 320, 1647-1651

Li R, Fan W, Tian G, Zhu H, He L et 117 al. (2010) The sequence and de novo assembly of the giant panda genome. Nature 463, 311–317

Nie Y, Zhang Z, Raubenheimer D, Elser JJ, Wei W, Wei F (2015) Obligate herbivory in an ancestrally carnivorous lineage: the giant panda and bamboo from the perspective of nutritional geometry. Functional Ecology 29, 26–34

Rosen M (2015) Pandas’ gut bacteria resemble carnivores. Science News 19/05/2015

Wei G, Lu H, Zhou Z, Xie H, Wang A, Nelson K, Zhao L (2007) The microbial community in the feces of the giant panda (Ailuropoda melanoleuca) as determined by PCR-TGGE profiling and clone library analysis. Microb Ecol 54, 194–202

Wei F, Hu Y, Yan L, Nie Y, Wu Q, Zhang Z (2014) Giant Pandas Are Not an Evolutionary cul-de-sac: Evidence from Multidisciplinary Research. Mol Biol Evol 32, 4-12

Williams CL, Willard S, Kouba A, Sparks D, Holmes W et al. (2013) Dietary shifts affect the gastrointestinal microflora of the giant panda (Ailuropoda melanoleuca). J Anim Physiol Anim Nutr 97, 577-585

Xue Z, Zhang W, Wang L, Hou R, Zhang M et al. (2015) The bamboo-eating giant panda harbors a carnivore-like gut microbiota, with excessive seasonal variations. mBio 6(3), e00022-15

Zhao H, Yang JR, Xu H, Zhang J (2010) Pseudogenization of the Umami Taste Receptor Gene Tas1r1 in the Giant Panda Coincided with its Dietary Switch to Bamboo. Mol Biol Evol 27(12), 2669–2673

Zhu LF, Wu Q, Dai JY, Zhang SN, Wei FW (2011) Evidence of cellulose metabolism by the giant panda gut microbiome. Proc Natl Acad Sci USA 108, 17714–17719.

Els bacteris de la vinya i del “terroir”, i presència d’Oenococcus als raïms del Priorat

Click here for the english version: Bacteria of vineyard and terroir, and presence of Oenococcus in Priorat (South Catalonia) grapes

22 abril 2015 

Els viticultors creuen que la terra en la qual creixen les vinyes dóna una qualitat única als seus vins, i d’això en diuen el terroir, o terrer si ho traduïm al català. Es pot considerar que la resposta fisiològica de les vinyes al tipus de sòl i les condicions climàtiques, juntament amb les característiques de la varietat i la forma de cultiu, donen lloc a unes propietats organolèptiques del vi que defineixen el seu terroir (Zarraonaindia et al 2015). Ara bé, no es coneix gaire si hi podria haver una microbiota específica de cada terroir, ja que aquest tema s’ha estudiat relativament poc.

Els microorganismes vínics als raïms ? Saccharomyces no hi és o no se’l troba

Els principals protagonistes de les fermentacions víniques, la alcohòlica (Saccharomyces cerevisiae) i la malolàctica (Oenococcus oeni) normalment no apareixen fins que el most està fermentant, ja doncs al celler. En condicions normals de raïms sans, pràcticament no es troba S. cerevisiae.

Oenococcus oeni als raïms ? Em sembla que nosaltres l’hem trobat !

En quant a O. oeni, fins ara s’ha publicat molt poc sobre la seva presència i aïllament en els raïms. En diversos treballs, com Sieiro et al (1990), o més recentment Bae et al (2006), ja havien aïllat alguns bacteris làctics de la superfície de raïms, però no O. oeni. Només Garijo et al (2011) van aconseguir aïllar una colònia (una només) d’O. oeni a partir de raïms de la Rioja. D’altra banda, s’ha detectat el DNA d’O. oeni en alguna mostra de raïms de Bordeus (Renouf et al 2005, Renouf et al 2007) per PCR-DGGE del gen rpoB, encara que no van aïllar cap bacteri d’aquesta espècie.

Em plau poder comentar que recentment al nostre grup hem aconseguit aïllar O. oeni dels raïms i tipificar-ne diverses soques, i justament estem elaborant una publicació al respecte (Franquès et al 2015). Efectivament, l’equip de recerca de bacteris làctics BL-URV, junt amb els companys de llevats del mateix grup de Biotecnologia Enològica (Facultat d’Enologia de la Universitat Rovira i Virgili a Tarragona) estem treballant en un projecte europeu, el “Wildwine” (FP7-SME-2012 -315065), que té per objectius analitzar els microorganismes autòctons (d’aquí lo de “wild”) del sistema vitivinícola del Priorat, i seleccionar-ne soques amb potencial enològic. Al projecte també hi participen la DOQ Priorat i el celler Ferrer-Bobet, així com grups de recerca i associacions de cellers de Bordeus, el Piemont i Grècia. En el marc d’aquest projecte vam prendre mostres de raïms (garnatxa i carinyena) de diverses finques del Priorat (Figura 1), així com també de vins realitzant la fermentació malolàctica, i en vam obtenir uns 1900 aïllats de bacteris làctics. Vam optimitzar l’aïllament a partir dels raïms a partir de la polpa i del most amb diversos mètodes d’enriquiment, i així vam obtenir uns 110 aïllats de raïms, identificats com O. oeni per tècniques moleculars específiques. Un cop tipificats, hem comprovat que els seus perfils moleculars no coincideixen amb soques comercials i per tant són autòctones. A més, alguns d’aquests aïllats dels raïms també els hem trobat als vins fets als cellers corresponents.

Fig 1 garna-cari Priorat

Figura 1. Prenent mostres de garnatxa (esquerra) i carinyena (dreta) de finques del Priorat per tal d’aïllar bacteris làctics com Oenococcus (Fotos Albert Bordons).


La microbiota dels raïms

Els raïms tenen una ecologia microbiana complexa que inclou llevats, fongs micelials i bacteris. Alguns només es troben als raïms, com els fongs paràsits i els bacteris ambientals, i altres tenen la capacitat de sobreviure i créixer als vins: sobretot llevats, bacteris làctics i bacteris acètics. La proporció de tots plegats depèn de l’estat de maduració del raïm i de la disponibilitat de nutrients.

Quan els fruits són intactes, la microbiota predominant són els llevats basidiomicets com Cryptococcus i Rhodotorula, però quan són més madurs, comencen a tenir microfisures que faciliten la disponibilitat de nutrients i expliquen la predominança just abans de la verema d’ascomicets lleugerament fermentatius com Candida, Hanseniaspora, Metschnikowia i Pichia. Quan la pell ja està més danyada poden aparèixer llevats perjudicials com Zygosaccharomyces i Torulaspora, i bacteris acètics. Entre els fongs filamentosos poden haver-hi ocasionalment alguns molt perjudicials com Botrytis (la podridura) o Aspergillus productors d’ocratoxina, que encara que només són actius a la vinya, els seus productes poden afectar la qualitat del vi.

D’altra banda, a la superfície dels raïms s’han aïllat bacteris ubics ambientalment com diversos enterobacteris, Bacillus, i estafilococs, però cap d’ells pot créixer al vi (Barata et al 2012).

Tornant a la possible microbiota específica del terroir, s’ha vist que alguns compostos volàtils que contribueixen a l’aroma del vi, com 2-metil-butanoic o 3-metil-butanol, són produïts per microorganismes aïllats a les vinyes, com el bacteri grampositiu Paenibacillus, o el fong basidiomicet Sporobolomyces o l’ascomicet Aureobasidium. Per tant, podria haver una relació entre algunes de les espècies microbianes trobades a la vinya i alguns aromes detectats al vi, procedents del most, és clar (Verginer et al 2010).

La metagenòmica com a eina analítica de la microbiota dels raïms

Donat que els mètodes clàssics d’aïllament i cultiu dels microorganismes són lents, laboriosos i alguns dels microbis no s’aconsegueix fer-los créixer en els medis d’aïllament, actualment es recorre als mètodes de seqüenciació massiva o metagenòmica. Aquests consisteixen en analitzar el DNA present i a partir de les seqüències, deduir amb les bases de dades quins són els microorganismes presents a la mostra. En el cas dels bacteris sovint s’utilitza el DNA amplificat del fragment V4 del gen 16S RNA (Caporaso et al 2012).

S’ha utilitzat en mostres de vins botrititzats (Bokulich et al 2012) i s’han trobat proporcions de diversos bacteris làctics (però no Oenococcus), inclosos alguns no associats normalment a vi. També s’ha utilitzat per veure la microbiota resident als cellers i com canvia segons les estacions, comprovant que a les superfícies dels dipòsits i maquinària del celler hi ha una majoria de microorganismes no relacionats amb el vi ni tampoc perjudicials (Bokulich 2013).

Amb aquesta tècnica Bokulich et al (2014) també han analitzat els raïms i han vist diferències clares entre les proporcions dels diversos grups bacterians (i de fongs) entre diferents llocs, diferents varietats, i també segons les condicions ambientals o biogeogràfiques. Per exemple, en analitzar 273 mostres de mostos de raïms de Califòrnia, les 3 varietats (Cabernet, Chardonnay i Zinfandel) queden bastant discriminades en una anàlisi de components principals respecte a les comunitats bacterianes trobades a cada mostra (Figura 2).

Així doncs, els grups o taxons bacterians dominants en una varietat o ambient determinat podrien aportar unes característiques específiques en aquells vins, i això podria explicar alguns patrons regionals o de terroir en les propietats organolèptiques d’aquests vins (Bokulich et al 2014).

Fig 2 ACP Bokulich 2014

Figura 2. Anàlisi de components principals de les comunitats bacterianes de mostres de mostos de raïms de Sonoma (Califòrnia) de 3 varietats diferents (Cabernet en vermell, Chardonnay en verd i Zinfandel en blau) (Bokulich et al 2014).


Nosaltres també hem realitzat un estudi de seqüenciació massiva amb les mostres de raïms de les quals hem obtingut aïllats d’O. oeni, com he comentat abans (Franquès et al 2015), i en més 600.000 seqüències del rRNA 16S analitzades hem trobat sobretot Proteobacteris i Firmicutes. Entre aquests grampositius, hem trobat seqüències de bacteris làctics (un 15%) i d’aquests hem pogut confirmar amb èxit la presència d’O. oeni en un 5% de les seqüències. Per tant, hem aïllat O. oeni dels raïms i n’hem detectat el seu DNA en força mostres.

La microbiota bacteriana de tota la vinya i del sòl

Com veiem, s’ha estudiat una mica la microbiota dels raïms i dels vins, però molt menys la microbiota dels sòls, la qual pot definir més bé el terroir, que està influït pel clima local i les característiques de la vinya.

Veiem a la Figura 3 un resum dels principals gèneres trobats a les diferents parts de la vinya i al sòl (Gilbert et al 2014).

Fig 3 Gilbert 2014

Figura 3. Principals bacteris i fongs associats als òrgans i sòl de Vitis vinifera (Gilbert et al 2014)


Recentment s’ha publicat un treball interessant (Zarraonaindia et al 2015) sobre aquest tema, amb l’objectiu de veure si el sòl podria ser la principal font de bacteris que colonitzen els raïms. Han agafat mostres de sòl, arrels, fulles, raïms i flors de Merlot, de diferents terrenys i anys, de Suffolk, Nova York, i n’han analitzat el DNA dels bacteris presents mitjançant seqüenciació del 16S rRNA. Han trobat que un 40% de les espècies trobades són presents a totes les mostres de sòls i arrels, mentre que en fulles i fruits hi ha més variabilitat, i a més un 40% de les trobades en fulles i fruits també apareixen a les mostres de sòls. Tot plegat suggereix que molts dels bacteris s’originen al sòl.

En quant als tipus de bacteris presents, com veiem (Figura 4), predominen els Proteobacteris (sobretot Pseudomonas i Methylobacterium), principalment a les parts aèries de la planta. També hi han Firmicutes lògicament, i Acidobacteria i Bacteroides.

Fig 4 microbiota vineyard

Figura 4. Composició de la comunitat bacteriana, a nivell taxonómic de fílum, en mostres de diferents òrgans de la vinya i el seu sòl (Zarraonaindia et al 2015).


Encara que s’observen variacions en totes les mostres en funció de l’any (poden tenir diferents condicions climàtiques) i en funció de factors edàfics diferents (pH, C:N, humitat), com veiem (Figura 5) les anàlisis de components principals demostren que els tipus de mostres (sòl, arrels, fulles, raïms) es diferencien força bé, i mostres de mostos abans de fermentar queden semblants a les de raïms.

Fig 5 distribució grups mostres OTUs

Figura 5. Anàlisi de components principals mostrant les semblances en quant a la composició dels grups taxonòmics presents, entre tots els tipus de mostres, incloent-ne de mostos (Zarraonaindia et al 2015).


Això suggereix que la comunitat bacteriana present als raïms roman relativament estable fins al most, i si més no, més estable que les diferències entre òrgans. Al mateix temps, una part important dels representants dels fílums bacterians dels raïms vindrien del sòl. Això es pot explicar perquè en fer la verema manual els raïms sovint són situats en caixes que es deixen a terra, o bé si es fa verema mecànica, la maquinària utilitzada remou el terra i genera pols, que pot colonitzar els raïms.

Per tant, la microbiota del sòl és una font de bacteris associats a la vinya i pot tenir un paper en el most, i per tant en la vinificació, i potencialment en la formació de les característiques del terroir. Alguns d’aquest bacteris poden tenir papers no coneguts de productivitat o de resistència a malalties de la planta, o contribuir a les característiques organolèptiques del vi (Zarraonaindia et al 2015).

A banda d’això, i pensant en els microorganismes vínics, responsables de les fermentacions, com he comentat, al nostre laboratori hem pogut confirmar que als raïms hi ha algunes soques d’Oenococcus oeni i ho hem corroborat amb la detecció del seu DNA als mateixos raïms.


Bibliografia

Bae S, Fleet GH, Heard GM (2006) Lactic acid bacteria associated with wine grapes from several Australian vineyards. J Appl Microbiol 100, 712-727

Barata A, Malfeito-Ferreira M, Loureiro V (2012) The microbial ecology of wine grapes (Review). Int J Food Microbiol 153, 243-259

Bokulich NA, Joseph CML, Allen G, Benson AK, Mills DA (2012) Next-generation sequencing reveals significant bacterial diversity of botrytized wine. Plos One 7, e36357

Bokulich NA, Ohta M, Richardson PM, Mills DA (2013) Monitoring seasonal changes in winery-resident microbiota. Plos One 8, e66437

Bokulich NA, Thorngate JH, Richardson PM, Mills DA (2014) Microbial biogeography of wine grapes is conditioned by cultivar, vintage, and climate. PNAS nov 25, E139-E148

Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M, Gormley N, Gilbert JA, Smith G, Knight R (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6, 1621–1624

Franquès J, Araque I, Portillo C, Reguant C, Bordons A (2015) Presence of autochthonous Oenococcus oeni in grapes and wines of Priorat in South Catalonia. Article en elaboració.

Garijo P, Lçopez R, Santamaría P, Ocón E, Olarte C, Sanz S, Gutiérrez AR (2011) Eur Food Res Technol 233, 359-365

Gilbert JA, van der Lelie D, Zarraonaindia I (2014) Microbial terroir for wine grapes. PNAS 111, 5-6

Renouf V, Claisse O, Lonvaud-Funel A (2005) Understanding the microbial ecosystem on the grape berry surface through numeration and identification of yeast and bacteria. Aust J Grape Wine Res 11, 316-327

Renouf V, Claisse O, Lonvaud-Funel A (2007) Inventory and monitoring of wine microbial consortia. Appl Microbiol Biotechnol 75, 149-164

Sieiro C, Cansado J, Agrelo D, Velázquez JB, Villa TG (1990) Isolation and enological characterization of malolactic bacteria from the vineyards of Northwestern Spain. Appl Environ Microbiol 56, 2936-2938

Verginer M, Leitner E, Berg G (2010) Production pf volatile metabolites by grape-associated microorganisms. J Agric Food Chem 58, 8344-8350

Tenim clostridis bons al budell i alguns eviten les al·lèrgies

 Click here for the english version: We have good clostridia in the gut and some of them prevent allergies 

1 març 2015

Clostridis: qui són ?

Els clostridis o clostridials, amb el gènere Clostridium i altres relacionats, són bacteris grampositius esporulats anaerobis estrictes, del fílum taxonòmic Firmicutes. Aquest fílum inclou a més dels clostridis, els aerobis esporulats bacil·lals (Bacillus, Listeria, Staphylococcus i altres) i els anaerobis aero-tolerants lactobacil·lals (o sigui els meus amics bacteris làctics: Lactobacillus, Leuconostoc, Oenococcus, Pediococcus, Lactococcus, Streptococcus etc). Tots els Firmicutes tenen formes regulars de coc o bacil i constitueixen la branca evolutiva de bacteris grampositius amb contingut baix de G+C al seu DNA. L’altra gran branca evolutiva de bacteris grampositius són els Actinobacteris, d’alt G+C i de formes més irregulars, que inclou Streptomyces, Corynebacterium, Bifidobacterium i Propionibacterium entre altres.

flora_cover

 

 

Com són anaerobis, els clostridis tenen un metabolisme fermentatiu, tant de carbohidrats i d’aminoàcids, essent els principals responsables de la descomposició anaeròbica de les proteïnes, coneguda com a putrefacció. Poden viure en hàbitats molt diversos, però sobretot al sòl i sobre material vegetal i animal en descomposició. Com veurem tot seguit, també formen part de la microbiota intestinal humana i d’altres vertebrats.

Els clostridis més coneguts són els dolents (Figura 1): a) C. botulinum, que produeix la botulina del botulisme, encara que avui dia té aplicacions mèdiques i cosmètiques, com sabeu (Botox); b) C. perfringens, agent de la gangrena; c) C. tetani, que causa el tètanus; i d) C. difficile, causa de diarrea postantibiòtica i algunes colitis hospitalàries.

clostridium_bacteria

Figura 1. Les 4 espècies més patògenes de Clostridium. Imatge treta de http://www.tabletsmanual.com/wiki/read/botulism

 

Clostridis a la microbiota intestinal

Tal com comentava a un post anterior (Bacteris de l’intestí ……) d’aquest mateix blog, al tracte gastrointestinal humà hi ha un ecosistema complex, i divers segons els individus i l’edat, amb un total de 1014 microorganismes. La majoria d’aquests són bacteris, a banda d’alguns arquees metanògens (un 0.1%) i algun eucariota (llevats i fongs filamentosos). Quan es fan aïllaments clàssics microbiològics a partir de mostres del colon i es cultiven els aïllats s’obtenen unes 400 espècies microbianes i els grups més assenyalats són proteobacteris (sobretot enterobacteris, com E. coli), firmicutes com Lactobacillus i alguns Clostridium, actinobacteris com Bifidobacterium, i alguns Bacteroides. Entre tots aquests aïllats s’han reconegut alguns amb efecte positiu sobre la salut i que són emprats com a probiòtics, com Bifidobacterium i Lactobacillus, bacteris considerats GRAS (Generally Recognized As Safe).

Però des de fa uns 10 anys les tècniques moleculars independents de cultiu, de seqüenciació dels gens del RNA ribosomal, han revelat moltes més espècies, arribant a ser unes 1000. Com veiem a la Figura 2, treta de la bona revisió de Rajilic-Stojanovic et al (2007), hi ha dos grups que tenen molts més representants dels que es pensava: Bacteroides i els clostridials.

 

Rajilic 2007 Fig 1

 

Figura 2. Arbre filogenètic basat en les seqüències gèniques del 16S rRNA dels diversos filotipus trobats al tracte gastrointestinal humà. La proporció de filotipus cultivables o no cultivables de cada grup està representada pel color des del blanc (cultivables) passant pel gris fins al negre (no cultivables). Per a cada grup filogenètic s’indiquen el nombre de filotipus diferents (Rajilic-Stojanovic et al 2007)

 

En estudis més recents relacionats amb la dieta com el fet per Walker et al (2011) amb mostres fecals de voluntaris s’han estimat les poblacions dels diversos grups mitjançant PCR quantitativa del DNA del 16S rRNA. Els grups més nombrosos, amb un 30% cadascun, han estat Bacteroides i els clostridials. Entre aquests destaquen Faecalibacterium prausnitzii (11%), Eubacterium rectale (7%) i Ruminococcus (6%). Com veiem el grup dels clostridials inclou nombrosos gèneres diferents del conegut Clostridium.

De fet, si considerem la població de cada espècie present al tracte gastrointestinal humà, la més abundant sembla ser un clostridial: F. prausnitzii (Duncan et al 2013).

 

Beneficis d’alguns clostridials

Aquests darrers anys s’ha anat veient que precisament són algunes espècies de clostridials, del gèneres Faecalibacterium, Eubacterium, Roseburia i Anaerostipes (Duncan et al 2013), les que més contribueixen a la producció dels àcids grassos de cadena curta (AGCC, SCFAs en anglés) al colon. Els clostridials fermenten els carbohidrats de la dieta que s’escapen de la digestió produint els AGCC, bàsicament acetat, propionat i butirat, que es detecten a la femta (50-100 mM), i que són absorbits a l’intestí. L’acetat és metabolitzat sobretot pels teixits perifèrics, el propionat és gluconeogènic, i el butirat és la principal font d’energia de l’epiteli del colon. Els AGCC en total arriben a ser el 10% de l’energia obtinguda per l’hoste humà. Alguns d’aquests clostridials com Eubacterium i Anaerostipes també utilitzen com a substrat el lactat produït per altres bacteris com els làctics i Bifidobacterium, per produir igualment els AGCC (Tiihonen et al 2010).

 

Els clostridis de la microbiota protegeixen de la sensibilització per al·lèrgens dels aliments

Efectivament, això és el que han demostrat Stefka et al (2014) en un recent treball excel·lent, com a darrera troballa dels aspectes positius dels clostridis de la microbiota. En administrar al·lèrgens (Ara h) del cacauet (Arachis hypogaea) a ratolins que havien estat tractats amb antibiòtics o a ratolins sense microbiota (Germ-free, criats en ambient estèril), observaven que hi havia una hiperreactivitat al·lèrgica sistèmica, amb inducció de immunoglobulines específiques, o sigui, una sensibilització.

En els ratolins tractats amb antibiòtics s’observava una reducció significativa de la microbiota en el nombre de bacteris (analitzant els gens del 16S rRNA) a l’íleon i a la femta, i a més s’alterava la biodiversitat, de tal manera que els Bacteroides i clostridials predominants en condicions normals quasi desapareixien i en canvi augmentaven només els lactobacils.

Per veure el paper d’aquests grups predominants a la microbiota, Stefka et al. van colonitzar l’intestí de ratolins sense microbiota amb Bacteroides, i altres amb clostridis. Això és el que se’n diuen animals gnotobiòtics, o sigui animals dels que se sap exactament quins tipus de microorganismes contenen.

Doncs bé, Stefka et al. han demostrat que la colonització selectiva de ratolins gnotobiòtics amb clostridis els confereix una protecció enfront els al·lèrgens del cacauet, cosa que no passa amb Bacteroides. Per a la colonització amb clostridis, van utilitzar una suspensió d’espores extretes de mostres fecals de ratolins sans, i van confirmar que les seqüències gèniques d’aquest extracte corresponien sobretot a membres dels clostridials.

Així doncs, en efecte, els ratolins colonitzats amb clostridis presentaven menors nivells de l’al·lergen al sèrum (Figura 3), tenien menor contingut d’immunoglobulines, no hi havia inflamació del cec, i la temperatura corporal es mantenia. Els ratolins tractats amb antibiòtics que havien presentat la reacció hiperal·lèrgica en administrar-los els antígens també reduïen la reacció en colonitzar-los amb els clostridis.

 

fig 4 skefta

Figura 3. Nivells de l’al·lergen “Ara h” del cacauet en sèrum després de la ingesta de cacauets, en ratolins sense microbiota (Germ-free), colonitzats amb Bacteroides (B. uniformis) i colonitzats amb clostridis (Clostridia). Tret de Stefka et al (2014).

 

A més, en aquest treball exhaustiu, Stefka et al. han realitzat una anàlisi transcriptòmica amb microarrays de les cèl·lules de l’epiteli intestinal dels ratolins i han trobat que els gens de producció de la citoquina IL-22 estan induïts als animals colonitzats amb clostridis, i que aquesta citoquina redueix la captació de l’al·lergen per part de l’epiteli i per tant n’evita l’entrada a la circulació sistèmica, contribuint també a la protecció enfront la hipersensibilització. Tots aquests mecanismes han estat revisats per Cao et al (2014) i en veiem un esquema a la Figura 4.

En conclusió, amb això s’obren noves perspectives d’estudis per prevenir les al·lèrgies alimentàries mitjançant la modulació de la composició de la microbiota intestinal. Tot plegat, afegint aquestes qualitats antiinflamatòries a més de les esmentades de producció de butirat i altres AGCC, i del consum de lactat, caldrà anar pensant en la possible utilització de clostridials per a candidats com a probiòtics, a banda dels reconeguts Lactobacillus i Bifidobacterium.

 

fig 4 Cao b

 

Figura 4. Esquema de la inducció dels clostridis sobre la producció de citoquines per les cèl·lules epitelials de l’intestí, així com la producció d’àcids grassos de cadena curta (SCFAs) pels clostridis (Cao et al 2014).

 

Bibliografia

Cao S, Feehley TJ, Nagler CR (2014) The role of commensal bacteria in the regulation of sensitization to food allergens. FEBS Lett 588, 4258-4266

Duncan SH, Flint HJ (2013) Probiotics and prebiotics and health in ageing populations. Maturitas 75, 44-50

Rajilic-Stojanovic M, Smidt H, de Vos WM (2007) Diversity of the human gastrointestinal tract microbiota revisited. Environ Microbiol 9, 2125-2136

Rosen M (2014) Gut bacteria may prevent food allergies. Science News 186, 7, 4 oct 2014

Russell SL, et al. (2012) Early life antibiotic-driven changes in microbiota enhance 
susceptibility to allergic asthma. EMBO Rep 13(5):440–447

Stefka AT et al (2014) Commensal bacteria protect against food allergen sensitization. Proc Nat Acad Sci 111, 13145-13150

Tiihonen K, Ouwehand AC, Rautonen N (2010) Human intestinal microbiota and healthy aging. Ageing Research Reviews 9:107–16

Walker AW et al (2011) Dominant and diet-responsive groups of bacteria within the human colonic microbiota. The ISME J 5, 220-230

Els bacteris de l’intestí ens controlen el què mengem

Click here for the english version: Bacteria in the gut are controlling what we eat

Sembla que és així: els microbis del nostre tracte gastrointestinal (TGI) influeixen en la nostra tria de menjar. No és estrany: els microbis, bacteris bàsicament, són presents al TGI en quantitats importants, més de 10 cèl.lules bacterianes per cadascuna de les nostres, un total de 1014 (el cós humà té unes 1013 cèl.lules). Això equival a uns 1-1.5 kg de pes. I aquest bacteris conviuen amb nosaltres des de sempre, ja que tots els mamífers en tenen, amb la qual cosa han anat evolucionant amb els nostres precursors i per tant estan molt ben adaptats al nostre ambient intern. Com que per a ells els nostres cossos són el seu hàbitat, doncs millor si poden controlar el que els arriba a l’intestí. I cóm ho poden fer ? Doncs donant ordres al cervell per menjar tal cosa o tal altra que els vagin bé als microbis.

 

Fig 1 comandament

Figura 1. “Centre de comandament del tracte gastro-intestinal” (muntatge propi, Albert Bordons)

 

Bé, doncs anat seriosament, hi ha alguns treballs previs en aquest sentit, d’una relació entre les preferències per una dieta determinada i la composició microbiana del TGI (Norris et al 2013). De fet, és una interacció bidireccional, una més dels molts aspectes de mutualisme simbiòtic entre nosaltres i la microbiota que ens habita (Dethlefsen et al 2007).

Hi ha moltes proves que la dieta influeix en la microbiota. Un dels exemples més vistosos és que s’ha vist que els nens africans alimentats quasi exclusivament en sorgo tenen més microbis cel.lulolítics que altres nens (De Filippo et al 2010).

El cervell també pot influir indirectament en la microbiota entèrica per canvis en la motilitat, secreció i permeabilitat gastrointestinals, o directament alliberant molècules al lumen del digestiu des de cèl.lules (del sistema immune o neurones) subepitelials (Rhee et al 2009).

El TGI és un ecosistema complex on diferent espècies de bacteris i altres microorganismes han de competir i col.laborar entre ells i amb les cèl.lules de l’hoste. El menjar ingerit per l’hoste (humà o altres mamífers) és un factor important en la selecció contínua d’aquests microbis i la naturalesa d’aquest menjar està sovint determinada per les preferències de l’hoste. Els bacteris que puguin manipular aquestes preferències tindran avantatges sobre els que no ho facin (Norris et al 2013).

Recentment Alcock et al (2014) han recollit en una revisió les evidències en aquest sentit. Els microbis poden manipular la conducta alimentària de l’hoste en benefici propi a través de diverses estratègies possibles. Veiem-ne a continuació alguns exemples relacionats amb l’esquema de la Figura 2.

 

Fig 2 human microbiome behaviour appetite

Figura 2. Com si els microbis fossin titellaires i els humans fóssim les titelles, els microbis poden controlar el que volem menjar mitjançant una sèrie de mecanismes senyalats. Adaptat de Alcock et al 2014.

 

Les persones que tenen “desitjos” de xocolata tenen diferents metabòlits microbians a l’orina que les persones indiferents per a la xocolata, malgrat tenir la mateixa dieta.

La disfòria, o sigui, el malestar en l’humà fins que mengem aliments que milloren el “benestar” microbià, pot ser deguda a l’expressió de gens bacterians de virulència i la percepció de dolor per l’hoste. Això és perquè la producció de toxines sovint és desencadenada per una baixa concentració de nutrients limitants del creixement. La detecció de sucres i altres nutrients regula la virulència i el creixement de diversos microbis. Aquests lesionen directament l’epiteli intestinal quan alguns nutrients són absents. D’acord amb aquesta hipòtesi, s’ha demostrat que proteïnes de virulència bacteriana activen els receptors de dolor. S’ha vist que el dejuni en ratolins augmenta la percepció del dolor per un mecanisme del nervi vagal.

Els microbis també poden alterar les preferències alimentàries dels hostes canviant l’expressió dels receptors del gust a l’hoste. En efecte, per exemple s’ha vist que ratolins lliures de microbis prefereixen més els dolços i tenen un major nombre de receptors del dolç a la llengua i a l’intestí que els ratolins amb una microbiota normal.

La conducta alimentària de l’hoste també pot ser manipulada pels microbis mitjançant el sistema nerviós, pel nervi vague, que conecta les 100 milions de neurones del sistema nerviós entèric des de l’intestí a la base del cervell via medul.la. Els nervis entèrics tenen receptors que reaccionen amb la presència de determinats bacteris i dels metabòlits bacterians, com els àcids grassos de cadena curta. El nervi vague regula la conducta alimentària i el pes corporal. S’ha vist que l’activitat del nervi vague de rates estimulades amb norepinefrina fa que malgrat estar saciades segueixin menjant. Això suggereix que els microbis del TGI produeixen neurotransmissors que poden contribuir a la sobrealimentació.

Els neurotransmissors produïts pels microbis són anàlegs de les hormones dels mamífers relacionades amb l’estat d’ànim i el comportament. Més del 50% de la dopamina i la majoria de serotonina del cos tenen un origen intestinal. Molts habitants transitoris i persistents de l’intestí, incloent E. coli, diversos Bacillus, Proteus i Staphylococcus secreten dopamina. A la Taula 1 veiem un resum dels diversos neurotransmissors produïts per microbis del TGI. Al mateix temps, s’ha vist que enzims de l’hoste com l’amino-oxidasa poden degradar neurotransmissors produïts pels microorganismes, la qual cosa demostra les interaccions evolutives entre microbis i hostes.

 

Taula 1. Diversitat de neurotransmissors aïllats de diverses espècies microbianes (Roschchina 2010)

Neurotransmissor Gènere
GABA (àcid gamma-amino-butíric) Lactobacillus, Bifidobacterium
Norepinefrina Escherichia, Bacillus, Saccharomyces
Serotonina Candida, Streptococcus, Escherichia, Enterococcus
Dopamina Bacillus, Serratia
Acetilcolina Lactobacillus

 

 

 

 

 

 

 

Alguns bacteris indueixen a què els seus hostes els proveeixin els seus nutrients preferits. Per exemple, Bacteroides thetaiotaomicron es troba al mucus intestinal, on s’alimenta dels oligosacàrids secretats per les cèl.lules caliciformes de l’intestí, i aquest bacteri indueix el seu hoste mamífer a augmentar la secreció d’aquests oligosacàrids. Al contrari, Faecalibacterium prausnitzii, un no degradador de mucus, que es troba associat amb B. thetaiotaomicron, inhibeix la producció de mucus. Per tant, ens trobem en un ecosistema amb múltiples agents que interaccionen entre sí i amb l’hoste.

Com que la microbiota és fàcilment manipulable pels prebiòtics, probiòtics, antibiòtics, trasplantaments fecals, i canvis en la dieta, el control i l’alteració de la nostra microbiota ofereix un mètode viable als problemes altrament insolubles de l’obesitat i la mala alimentació.

 

Bibliografia

Alcock J, Maley CC, Aktipis CA (2014) Is eating behavior manipulated by the gastrointestinal microbiota? Evolutionary pressures and potential mechanisms. BioEssays 36, DOI: 10.1002/bies.201400071

De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, et al (2010) Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci USA 107:14691–6

Dethlefsen L, McFall-Ngai M, Relman DA (2007) An ecological and evolutionary perspective on human-microbe mutualism and disease. Nature 449:811-818

Lyte M (2011) Probiotics function mechanistically as delivery for neuroactive compounds: Microbial endocrinology in teh design and use of probiotics. BioEssays 33:574-581

Norris V, Molina F, Gewirtz AT (2013) Hypothesis: bacteria control host appetites. J Bacteriol 195:411–416

Rhee SH, Pothoulakis C, Mayer EA (2009) Principles and clinical implications of the brain–gut–enteric microbiota axis. Nature Reviews Gastroenterology and Hepatology 6:306-314

Roschchina VV (2010) Evolutionary considerations of neurotransmitters in microbial, plant, and animal cells. In Lyte M, Freestone PPE, eds; Microbial Endocrinology: Interkingdom Signaling in Infectious Disease and Health. New York: Springer. pp. 17–52

 

 

Els bons bacteris de la llet materna

Click here for the english version:  The good bacteria of breast milk

La llet materna, a més de ser molt nutritiva, aporta constituents bioactius que afavoreixen el desenvolupament del sistema immunològic de l’infant i el prevenen de malalties infeccioses. Des d’aquest punt de vista, els compostos materns més coneguts són immunoglobulines, cèl·lules immunocompetents i diversos antimicrobians. També conté substàncies prebiòtiques, o sigui, diverses molècules, com oligosacàrids, que estimulen el creixement específic de determinats bacteris a l’intestí de l’infant.

Tanmateix, uns altres constituents importants de la llet materna insospitats fins fa no gaire anys són els mateixos bacteris. En efecte, la llet no és estèril, conté microorganismes, bàsicament bacteris beneficiosos, que contribueixen a establir la microbiota intestinal del nadó, i que de fet són els primers en establir-s’hi. Encara que les llets artificials maternitzades es formulen per semblar-se al màxim a la llet materna, segueixen sent diferents i no contenen bacteris, i com a conseqüència la microbiota del tracte intestinal dels infants alimentats amb llet materna és diferent dels alimentats amb lllet artificial.

1-BL-mamant

Lactobacils (imatge de AJC1 Flickr) i nadó mamant (© Photos.com)

Precisament fa unes setmanes s’ha publicat un treball (Cabrera-Rubio et al., 2012) al American Journal of Clinical Nutrition que ha tingut força ressó als mitjans, blogs i les xarxes (cliqueu aquí per a un exemple), perquè demostra la gran diversitat de bacteris presents a la llet materna.

Encara que aquest treball fet per investigadors valencians (de l’Institut Cavanilles, Universitat de València, i del CSIC-IATA) juntament amb investigadors finlandesos, no és el primer treball que estudia aquest tema, el treball demostra que els bacteris són de molt diverses espècies.

Una de les novetats d’aquest treball és el mètode utilitzat, aprofitant els darrers avenços de biologia molecular: han estudiat el microbioma de la llet materna, o sigui, l’anàlisi de tots els possibles bacteris presents seqüenciant el DNA, sense fer els aïllaments dels bacteris fets clàssicament. Per fer-ho, a partir de la llet recollida estèrilment, s’extreu tot el DNA i d’aquest s’amplifica per PCR quantitativa el corresponent a fragments del gen bacterià del RNA ribosòmic 16S, i aquests gens amplificats són seqüenciats per piroseqüenciació (454 Roche GS-FLX), la tècnica més novedosa i ràpida de seqüenciació: una máquina d’aquestes permet fer uns 400 milions de parells de bases (pb) de DNA en unes 10 hores. Del gen rRNA de cada possible bacteri se’n seqüencien unes 500 pb. Amb això, en aquest treball han analitzat unes 120.000 seqüències, que corresponen a unes 2600 seqüències per mostra de llet.

Contrastant aquestes seqüències amb les de les bases de dades i aplicant mètodes estadístics es poden treure conclusions de quins grups taxonòmics (gèneres i espècies) bacterians hi són presents i en quina proporció.

2-Cabrera2012 generes bacteris

Gèneres de bacteris predominants en la llet materna (Cabrera-Rubio et al., 2012)

Com veiem a la figura d’aqui dalt, Cabrera et al. han trobat que en la llet de mares sanes els gèneres predominants són Leuconostoc, Weissella, Lactococcus i Staphylococcus, dels quals els 3 primers són bacteris làctics. Encara que aquests són predominants al calostre i a la llet dels primers mesos, després van augmentant altres bacteris com Veillonella o Leptotrichia (bacteris gram-negatius anaeròbics), que són típics comensals de la cavitat oral. En total, han trobat unes 1000 espècies, que varien segons les mares, i sobretot que varien curiosament en funció de si el part fou vaginal o per cesària, i de l’obesitat de la mare. Les raons d’això encara no estan clares.

I d’on venen els bacteris de la llet materna ?

A banda de les identificacions fetes en aquest estudi de Cabrera et al. (2012) en base als DNA presents, fent recompte de viables s’ha vist que el nombre total de bacteris a la llet materna és entre 2·104 i 3·105 per ml (Juan Miguel Rodríguez), o sigui gens menyspreable. Quin és el seu origen ?

L’estudi del microbioma de Cabrera et al. també conclou que la composició dels diferents bacteris presents és quelcom diferent de la d’altres comunitats bacterianes del cos humà (els nínxols bacterians humans: pell, boca, digestiu, vagina etc), i per tant el microbioma de la llet no és un subconjunt concret d’un d’aquests nínxols.

El grup Probilac de de la Universidad Complutense de Madrid, del qual el responsable és en Juan Miguel Rodríguez, amic i company de la Red BAL (Red espanyola de Bacteris Làctics), fa anys que treballen en aquest tema (ex. Martín et al 2003; Martín et al 2004).

Tal com es comenta en una recent revisió publicada d’aquest grup (Fernández et al 2012), els bacteris presents a la llet materna vindrien de 3 possibles fonts (figura d’aquí sota): bacteris de la pell del mateix pit, de la cavitat oral de l’infant, i el més sorprenent, bacteris comensals intestinals de la mare que passen a la llet per la ruta enteromamària.

3-fig Fdez Review

Fonts potencials dels bacteris presents al calostre i la llet humana, incloent el trànsit dels bacteris comensals intestinals a la llet materna per la ruta enteromamària (Fernández et al., 2012). DC: cèl·lules dendrítiques.

Efectivament, diversos estudis ja havien demostrat que cèl·lules dendrítiques atravessen l’epiteli intestinal (entre els enteròcits) i poden agafar bacteris comensals del lumen del digestiu, incorporant-les per endocitosi, però conservant-les vives. Vegeu el detall a l’esquema següent.

4-JM Rodríguez dendritic LAB no lege

Cèl·lula dendrítica capturant un bacteri de l’intestí (Esquema de J.M. Rodríguez, grup Probilac, Univ. Complutense de Madrid).

Aquestes cèl·lules dendrítiques viatgen a través del sistema circulatori, arribant a les glàndules mamàries, on sembla que incorporen els bacteris a la llet. Això és la ruta enteromamària.

En aquesta microbiota mamària també s’incorporarien bacteris de la pell del pit i de la boca de l’infant. Alguns d’aquests bacteris de la cavitat oral de fet estarien relacionats amb els del tracte gastrointestinal de l’infant. Com que els primers bacteris que colonitzen aquest tracte són els de la microbiota vaginal durant el part (i intestinal si es fa per cesària), això explicaria les relacions filogenètiques d’alguns bacteris de la llet amb els d’aquestes microbiotes.

En resum, veiem com els “bons” bacteris (bacteris làctics, però també bifidobacteris, i altres) del digestiu de la mare, per diferents vies, mitjançant la llet, arriben al digestiu de l’infant, desenvolupant-hi la microbiota pròpia, i ajudant a completar el sistema immune neonatal.

Bibliografia

Cabrera-Rubio R, MC Collado, K Laitinen, S Salminen, E Isolauri, A Mira (2012) The human milk microbiome changes over lactation and is shaped by maternal weight and mode of delivery. American J Clinical Nutrition 96, 544–51

Grupo Probilac (Juan Miguel Rodríguez Gómez) Microbiota de la leche humana en condiciones fisiológicas: http://www.ucm.es/info/probilac/microbiota2.htm, Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid

Fernández L, S Langa, V Martín, A Maldonado, E Jiménez, R Martín, JM Rodríguez (2012) The human milk microbiota: Origin and potential roles in health and disease. Pharmacological Research http://dx.doi.org/10.1016/j.phrs.2012.09.001

Hunt KM JA Foster, LJ Forney, UME Schütte, DL Beck, Z Abdo, LK Fox, JE Williams, MK McGuire, MA McGuire (2011) Characterization of the diversity and temporal stability of bacterial communities in human milk. PLoS ONE 6:e21313.

Martín R, S Langa, C Revriego, E Jiménez, ML Marín, J Xaus, L Fernández, JM Rodríguez (2003) Human milk is a source of lactic acid bacteria for the infant gut. J Ped. 143, 754-758.

Martín R, S Langa, C reviriego, E Jiménez, ML Marín, M Olivares, J Boza, J Jiménez, L fernández, J Xaus, JM Rodríguez (2004) The commensal microflora of human milk: new perspectives for food bacteriotherapy and probiotics. Trends Food Sci Technol 15:121–7.

Altres referències

Adlerberth I (2006) Reduced enterobacterial and increased staphylococcal colonization of the infantile bowel: an effect of hygienic lifestyle. Pediatric Res 59, 96-101.

Albesharata R et al (2011) Phenotypic and genotypic analyses of lactic acid bacteria in local fermented food, breast milk and faeces of mothers and their babies. Syst App Microb 34, 148–155

Domínguez-Bello MG et al (2010) Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci USA;107:11971–5.

Huurre A et al (2008) Mode of delivery—effects on gut microbiota and humoral immunity. Neonatology;93:236–40

LeBouder E et al (2006) Modulation of neonatal microbial recognition: TLRmediated innate immune responses are specifically and differentially modulated by human milk. J Immunol;176:3742–52.

Martín R et al (2009) Isolation of bifidobacteria from breast milk and assessment of the bifidobacterial population by PCR-denaturing gradient gel electrophoresis and quantitative real-time PCR. Appl Environ Microbiol 75:965–9.

Pérez PF et al (2007) Bacterial imprinting of the neonatal immune system: lessons from maternal cells? Pediatrics 119: 724–732.

Rescigno M et al (2001) Dendritic cells shuttle microbes across gut epithelial monolayers. Immunobiology 204:572–81.

Stockinger S et al (2001) Establishment of intestinal homeostasis during the neonatal period. Cell Mol Life Sci;68: 3699–712.

Formatge europeu de fa 7400 anys i «iogurt» al Sàhara fa 7000 anys

Click here for english version: European cheese 7400 years ago and yogur in Sahara 7000 years ago

Fa uns 15 dies (12 desembre) s’ha publicat online a Nature un treball (Salque et al. 2012) que aporta evidències arqueològiques d’elaboració de formatge a l’actual Polònia uns 5400 anys abans de Crist (aC). I el mes de juny es va publicar també a Nature un altre treball (Dunne et al. 2012) on s’evidenciava l’elaboració de llets fermentades semblants al iogurt al Sahara nordoriental (actualment Líbia) uns 5000 anys aC.

Utilització de la llet d’altres animals

L’agricultura, o sigui, la domesticació de les plantes per part dels humans, va començar entre el 10000 i el 5000 aC sobretot a l’Orient Mitjà (el Creixent Fèrtil: des del Nil fins a l’Èufrates), però també de forma independent en altres regions, com la Índia, Xina o diversos llocs d’Amèrica i Àfrica. Aquesta revolució neolítica agrícola comportà l’establiment de poblacions sedentàries i el naixement posterior de ciutats i civilitzacions. Al mateix temps, en aquests llocs també es domesticaren animals, però és molt probable que la domesticació de bovins, ovins i caprins ja tingué lloc abans, en poblacions encara no sedentàries. L’ús d’aquests animals comportà uns importants avenços, utilitzant-los per a usos secundaris sense matar-los (l’ús primari és la carn), com la tracció, la llana, i també la llet i els seus derivats lactis.

Qashqai de Persia munyint

Nòmada Qashqai (Pèrsia) munyint una ovella. Foto: M. Kiani

Els primers registres pictòrics i escrits d’utilització de la llet d’animals domèstics són d’Egipte i Mesopotàmia d’uns 3000 aC. Ara bé, darrerament se n’han trobat les primeres evidències clares anteriors en els residus orgànics conservats en restes ceràmiques, mitjançant l’anàlisi dels valors de δ13C (ratio entre els isòtops 13C i 12C) dels principals àcids grassos del greix de la llet. Aquesta tècnica, posada a punt per Dudd i Evershed (1998), es basa en les diferències entre els valors de δ13C de l’acid esteàric (C18:0) de la llet i aquest mateix del teixit adipòs del cos de l’animal, degut a la major proporció de carboni derivat de carbohidrats de la dieta utilitzat a la biosíntesi del C18:0 en el cos, respecte el del greix de la llet, on un 40% del C18:0 deriva dels greixos insaturats.

Amb aquesta tècnica del δ13C s’ha evidenciat la utilització de la llet en el 4t mil lenni aC a Gran Bretanya, en el 6è mil·lenni a l’est d’Europa, i més recentment (Evershed et al. 2008) s’ha demostrat que en el 7è mil·leni aC, fa 9000 anys, es munyia llet a l’Orient Mitjà i el sud-est d’Europa, sobretot a Anatòlia.

Però, quan van començar els adults humans a beure llet ?

beure llet

Com sabeu, la lactosa de la llet no és tolerada per una part important dels adults, sobretot dels pobles asiàtics i amerindis i molts africans. L’enzim lactasa que hidrolitza la lactosa en glucosa i galactosa la tenen tots els nadons, però com a tots els altres mamífers, quan es fan grans el gen de la lactasa ja no s’expressa. L’excepció són els que mantenen la producció de lactasa quan són adults i per tant poden beure llet sense problemes. Els que no la toleren és a causa de la fermentació de la lactosa pels bacteris del budell, que dona lloc a diarrees, flatulència i altres transtorns.

Rainer Zenz 550px-Laktoseintoleranz-1.svgPercentatges de poblacions humanes no tolerants a la lactosa. Mapa fet per Rainer Zenz.

Els humans amb més tolerància a la lactosa són els d’origen europeu i els dels pobles propers al Sahara i d’Orient Mitjà. A Europa hi ha un gradient de major a menor tolerància del nordoest cap al sudest. En estudis de biologia molecular s’ha demostrat que la tolerància a la lactosa va aparéixer per mutació d’un sol nucleòtid en diferents ocasions, entre fa 8000 i 3000 anys, en pobles ramaders del nord d’Europa i d’Aràbia (Swallow 2003, Enattah et al. 2008, Tellam 2012). Aquesta característica genètica fou seleccionada positivament degut als seus beneficis nutritius, i a més perquè a les zones desèrtiques és una font d’aigua, i al nord d’Europa la llet pot suplir la manca de calci degut a la poca irradiació solar i per tant la poca síntesi de vitamina D necessària per a l’absorció del calci.

 

Formatges i llets fermentades per als intolerants a la lactosa

Els formatges són llets quallades de les que s’extreu, en part o tot, el xerigot, o sigui l’aigua de la llet amb els seus components solubles, que són sobretot la lactosa. El precipitat que queda, el formatge, conté els lípids i les proteïnes de la llet però molt poca lactosa. Per tant, per als intolerants a la lactosa és un aliment equivalent nutritivament a la llet, però sense l’inconvenient de la lactosa. A més, els formatges es conserven més temps que la llet i adquireixen molt diversos gustos i textures, en funció del procés de quallat i dels microorganismes que intervenguin en la seva maduració. A les llets fermentades com els iogurts i altres (kefir, kumis, leben, etc) intervenen microorganismes, bacteris làctics sobretot, que consumeixen en part la lactosa i produeixen àcid làctic, que n’afavoreix la conservació. El seu contingut en lactosa no és tan baix com els formatges però les llets fermentades poden ser consumides per la majoria dels intolerants a lactosa.

Per aixó, el consum de diversos tipus de formatges i/o llets fermentades és quasi universal als humans, independentment de si són tolerants o no a la lactosa, i probablement ja existia en diversos pobles nòmades, amb els primers animals domesticats, i segurament aquesta fou la primera manera d’utilitzar la llet d’aquests animals.

Evidència de formatge elaborat a Europa fa uns 7400 anys

Com deia al principi, recentment s’ha publicat online a Nature un treball (Salque et al 2012) que aporta evidències arqueològiques d’elaboració de formatge a l’actual Polònia uns 5400 anys abans de Crist (aC).

Als jaciments de l’inici del neolític (fa uns 8000 anys) de diversos llocs d’Europa apareixen recipients amb petits orificis, en forma de tamís, que s’han interpretat des de fa anys com coladors de formatge, semblants als utilitzats avui dia en algunes regions. La llet es posa dins aquest recipient, s’hi afegeix el quall (extret de l’estòmac dels remugants, que conté proteases), i el quallat es va exprimint, separant-ne el xerigot pels orificis, fins obtenir el formatge fresc (Subbaraman 2012).

ceramica formtagera3Dibuix representant un recipient reconstruït (esquerra) i fragment real d’un tros d’aquest recipient (dreta) amb orificis, en forma de tamís, d’un jaciment de la regió de Kuyavia (al centre de Polònia). Imatge de Salque et al. (2012).

Doncs bé, Salque et al. (2012) han demostrat mitjançant l’esmentada tècnica del δ13C, a banda d’analitzar per cromatografia de gasos la composició de lípids, que les restes d’àcids grassos trobats en recipients del jaciment de Kuyavia (al nord de Varsòvia) provenen de la llet. La composició de greixos i els valors de δ13C d’aquests recipients coladors són diferents de les que troben en altres recipients com olles en les que probablement es cuinava carn de diversos animals. Per tant, es demostra que aquests recipients coladors foren utilitzats per elaborar formatges, en concret fa uns 7400 anys. Els autors emfatitzen la importància d’aquest tipus de ceràmica en el processat de productes lactis, i assenyalen en particular la importància per a les comunitats prehistòriques intolerants a la lactosa.

Evidència de llet fermentada (iogurt ?) al Sàhara fa 7000 anys

També com deia a dalt, el passat mes de juny es va publicar a Nature un altre treball (Dunne et al. 2012) on s’evidenciava l’elaboració de llets fermentades al Sàhara nordoriental (actualment Líbia) fa uns 7000 anys.

En contrast al procés dels inicis del sedentarisme neolític i de l’agricultura ben coneguts de l’Orient Mitjà, a l’Àfrica sahariana el pastoralisme amb vaques, ovelles i cabres va començar molt abans que la domesticació de les plantes. Veient l’actual desert del Sàhara, tan inhòspit i àrid, sembla impossible que hi prosperessin comunitats humanes amb extensos ramats, però aquesta regió va gaudir d’un període humit climàticament molt favorable que va començar fa uns 10000 anys i hi ha moltes evidències que fa uns 8000 anys hi proliferava fauna de tot tipus a les sabanes que actualment són el Sàhara. Els grups de caçadors i recol·lectors que hi vivien ja feien servir la terrissa per conservar els aliments, i paulatinament, en anar augmentant la sequera, devien passar a ser més dependents dels ramats.

Una prova d’aquests pobles nòmades ramaders en són les remarcables pintures i gravats rupestres que es troben al desert, al sudoest de Líbia (Wadi Teshuinat o Takarkori a les muntanyes Acacus, o el Wadi Tiksatin a l’àrea de Messak) de fa uns 7000 anys, possiblement la concentració més important a nivell mundial d’art prehistòric, amb moltes escenes de la vida diària. En aquestes representacions es pot veure la importància dels ramats per a aquests humans, amb dibuixos evidents de munyir les vaques. Tanmateix, no hi ha una datació fiable d’aquests gravats.

pintures rupestres SaharaEsquema dels dibuixos rupestres de Wadi Teshuinat, sudoest de Líbia. Figura treta de Dunne et al. (2012).

Doncs bé, el grup de Julie Dunne i Richard Evershed de la universitat de Bristol juntament amb el grup de Savino di Lernia de la universitat de Sapienza, han estudiat les restes de greixos presents a les terrisses del jaciment de Takarkori, mitjançant cromatografia de gasos, la mateixa acoblada a espectrometria de masses, i l’esmentada tècnica dels isòtops (δ13C). Els seus resultats demostren que aquestes terrisses s’utilitzaven per a elaborar llets fermentades, productes semblants al iogurt, entre fa 7000 i 4800 anys. A més, han trobat que els greixos de la llet provenien d’una varietat de plantes de diferents llocs, la qual cosa suggereix que transhumaven amb els ramats, en funció de l’estació. Aquest treball confirma que l’economia de productes lactis derivada dels bovins domesticats era activa en aquest període, segurament per compensar la probable intolerància a la lactosa.

vaso_murzuqCeràmica Murzuq, del jaciment de Takarkori, Líbia. Imatge: Savino di Lernia

Arran d’aquest treball, alguns científics (Callaway 2012) han suggerit que posteriorment a aquest període, les mutacions de tolerància a la lactosa sorgiren a Europa i Aràbia i s’escamparen pel Nord d’Àfrica gràcies als seus avantatges. En el clima cada cop més àrid del desert, el poder beure llet fresca i sense contaminar devia suposar una millor hidratació que els humans que no podien beure en no tenir actiu el gen de tolerància. D’aquesta manera, hi hagué una forta pressió selectiva per a la difusió de la tolerància a la lactosa a Àfrica.

Bibliografia

Arjamaa O, T Vuorisalo (2010) Genes, cultura y dieta. Investigación y Ciencia, 405, junio 2010, 69-77

Callaway E (2012) Pottery shards put a date on Africa’s dairying. North Africans may have been making yoghurt 7,000 years ago. Nature News, 20 june 2012-12-22

Dudd SN, RP Evershed (1998) Direct Demonstration of Milk as an Element of Archaeological Economies. Science 282, 1478-1481

Dunne J et al (2012) First dairying in green Saharan Africa in the fifth millennium bc. Nature 486, 390–394 (21 June 2012) doi:10.1038/nature11186

Enattah NS et al. (2008) Independent introduction of two lactase-persistence alleles into human populations reflects different history of adaptation to milk culture. Am J Human Genetics 82, 57-72.

Evershed RPet al. (2008) Earliest date for milk use in the Near East and southeastern Europe linked to cattle herding. Nature 455, 528-531 (25 September 2008), doi:10.1038/nature07180

Salque, M. et al. (2012) Earliest evidence for cheese making in the sixth millennium BC in northern Europe. Nature http://dx.doi.org/10.1038/nature11698

Subbaraman, N (2012) Art of cheese-making is 7,500 years old. Neolithic pottery fragments from Europe reveal traces of milk fats. Nature News, 12 dec 2012

Swallow DM (2003) Genetics of lactase persistence and lactose intolerance. Annu. Rev. Genet. 37, 197-219

Tellam R (2012) How dairying shaped the human genome. International Milk Genomics Consortium

No sé ni cómo te atreves

Fotografía y esas pequeñas cosas de cada día

Pols d'estels

El bloc d'Enric Marco

Life Secrets

For my students

All you need is Biology

Blog professional sobre Biologia · Blog profesional sobre Biología · A professional blog about Biology

Rambles of a PA student

Caffeinated forays into biological imaginings.

Horitzons llunyans

Mirades distants

#4wine

Los vinos son pequeñas historias dentro de una botella y nosotras queremos contarte las nuestras

Vi·moments·persones

Un maridatge a tres bandes

SciLogs: Artificial, naturalmente

Coses interessants de ciències de la vida i de la natura, i altres no tan "Bios"

microBIO

Coses interessants de ciències de la vida i de la natura, i altres no tan "Bios"

RealClimate

Coses interessants de ciències de la vida i de la natura, i altres no tan "Bios"

Quèquicom

Coses interessants de ciències de la vida i de la natura, i altres no tan "Bios"

Dionís de viatge a Ítaca

Experiències enoturístiques

%d bloggers like this: